Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2019

Fe(II) and Fe(III) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: A combined synthetic and *insitu* XAS approach

Anna Roffey,^{a,b} Nathan Hollingsworth^b, Husn-Ubayda Islam^{b,c}, Wim Bras^{c,d}, Gopinathan Sankar^b, Nora De Leeuw^e, and Graeme Hogarth^{a*}

- ^a Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
- ^b Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
- ^c Netherlands Organisation for Scientific Research DUBBLE@ESRF, 38043 Grenoble, France
- ^d Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, US
- ^e School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

Synthesis of dithiocarbamate salts

[H₂NMe₂][S₂CNMe₂] Me₂NH (15 mmol, 7.50 mL of a 2M solution in THF) was dissolved in further THF (20 mL) CS₂ (0.45 mL, 7.5 mmol) was added slowly dropwise over five mins whereupon a white precipitate began to form. The mixture was stirred for two h, filtered using a Büchner funnel and washed with THF (3 x 10 mL). Yield 1.1200 g, 90 %. ¹H NMR δ /ppm (CDCl₃): 2.78 (s, 6H, CH₃), 3.58 (s, 6H, CH₃), 8.42 (broad s, 2H, [(CH₃)₂NH₂]). ¹³C{¹H} NMR δ /ppm (CDCl₃): 35.4 (CH₃), 44.8 (CH₃), 210.2 (CS₂). Anal. Calc. for C₅H₁₄N₂S₂: C, 36.11; H, 8.49; N, 16.84. Found: C, 35.56; H, 8.38; N, 16.57. MS(EI): m/z 121 [S₂CN(CH₃)₂ + H⁺].

[NMe₄][S₂CNEt₂] To an ice-cooled solution of Me₄NOH (10 mmol, 3.65 g of a 25% wt solution in methanol) and Et₂NH (10 mmol) in methanol (50 mL), CS₂ (10 mmol, 0.60 mL) was added dropwise over five mins. The solution was allowed to come to room temperature and stirred overnight. Methanol was removed *in vacuo* resulting in a pale yellow crystalline powder. Yield 2.2075 g, 99 %. ¹H NMR 8/ppm (CDCl₃): 1.23 (t, 6H, J

= 7.0 Hz, CH_2CH_3), 4.14 (q, 4H, J = 7.0 Hz, CH_2CH_3). ¹³ $C{^1H}$ NMR δ /ppm (CDCl₃): 12.7 (CH_2CH_3), 47.5 (CH_2CH_3), 56.2 ($N(CH_3)_4$) 210.6 (CS_2). Anal. Calc. for $C_9H_{22}N_2S_2$: C, 48.60; H, 9.97; N, 12.06. Found: C, 48.41; H, 9.54; N, 11.73. **MS(EI)**: m/z 148 [$S_2CN(CH_2CH_3)_2$].

[NMe₄][S₂CNMeBu] To an ice-cooled solution of Me₄NOH (10 mmol, 3.65 g of a 25% wt solution in methanol) and MeBuNH (10 mmol) in methanol (50 mL), CS₂ (10 mmol, 0.60 mL) was added dropwise over five mins. The solution was allowed to come to room temperature and stirred overnight. Methanol was removed *in vacuo* resulting in a pale yellow crystalline powder. Yield 1.1578 g, 98 %. ¹H NMR δ /ppm (CDCl₃): 0.91 (t, 3H, J = 7.4 Hz, S₂CN(CH₃)(CH₂)₃CH₃), 1.31 (m, 2H, CH₂), 1.65 (m, 2H, CH₂), 3.51 (s, 3H, S₂CN(CH₃)(CH₂)₃CH₃), 3.55 (s, 12H, N(CH₃)₄), 4.14 (m, 2H, CH₂). ¹³C{¹H} NMR δ /ppm (CDCl₃): 14.19 (S₂CN(CH₃)(CH₂)₃CH₃), 20.32 (CH₂), 29.44 (CH₂), 42.41 (CH₂), 59.00 (S₂CN(CH₃)(CH₂)₃CH₃), 56.17 (N(CH₃)₄) 211.77 (CS₂). Anal. Calc. for C₁₀H₂₄N₂S₂: C, 50.80; H, 10.23; N, 11.85. Found: C, 49.47; H, 10.13; N, 11.41. MS(EI): m/z 162 [S₂CN(CH₃)(CH₂)₃CH₃].

Apparatus used for decomposition studies

