Rapid synthesis of hybrid methylammonium lead iodide perovskite quantum dots and rich MnI₂ substitution favouring Pb- free warm white LED applications

Rajan Kumar Singh^{a,b}, Sudipta Som^b, Somrita Dutta^c, Neha Jain^a, Mei-Tsun Kuo^b,

Jai Singh^a, Ranveer Kumar^{a,*} and Teng-Ming Chen ^{c,*}

^a Department of Physics, Dr. Harisingh Gour Central University, Sagar, 470003,

M. P., India

^b Department of Chemical Engineering, National Taiwan University, Taipei,

Taiwan, ROC

^cDepartment of Applied Chemistry, National Chiao Tung University, 1001

University Road, Hsinchu 30010, Taiwan

*To whom all correspondence should be addressed.

Email: tmchen@mail.nctu.edu.tw, ranveerssi@yahoo.com,

Tel: +88635731695, Fax: +88635723764.

S.N	PQDs	CH ₃ NH ₃	PbI ₂	MnI ₂	Oleic	Olelyla	Perovskite	Equal mixture
		Ι	(gm)	(gm)	Acid	mine	Precursor	of Toluene and
					(µl)	(µl)	(µl)	chloroform(ml)
		(gm)						
1	CH ₃ NH ₃ PbI ₃	0.0159	.0461	0	200	200	40	6
2	$CH_{3}NH_{3}Pb_{0.90}Mn_{0.05}I_{3}$	0.0159	.0438	.0015	200	200	40	6
3	$CH_{3}NH_{3}Pb_{0.90}Mn_{0.10}I_{3}$	0.0159	0.415	.0031	200	200	40	6
4	$CH_{3}NH_{3}Pb_{0.85}Mn_{0.15}I_{3}$	0.0159	0.392	.00464	200	200	40	6
5	$CH_{3}NH_{3}Pb_{0.80}Mn_{0.20}I_{3}$	0.0159	.0369	.0062	200	200	40	6
6	$CH_{3}NH_{3}Pb_{0.75}Mn_{0.25}I_{3}$	0.0159	.0346	.0077	200	200	40	6
7	$CH_{3}NH_{3}Pb_{0.70}Mn_{0.30}I_{3}$	0.0159	.0323	.0093	200	200	40	6
8	$CH_{3}NH_{3}Pb_{0.65}Mn_{0.35}I_{3}$	0.0159	0.03	.0108	200	200	40	6
9	$CH_{3}NH_{3}Pb_{0.60}Mn_{0.40}I_{3}$	0.0159	.0278	.0124	200	200	40	6
10	$CH_{3}NH_{3}Pb_{0.55}Mn_{0.45}I_{3}$	0.0159	.0254	.014	200	200	40	6
11	$CH_{3}NH_{3}Pb_{0.50}Mn_{0.50}I_{3}$	0.0159	.0231	.0155	200	200	40	6
12	$CH_{3}NH_{3}Pb_{0.40}Mn_{0.60}I_{3}$	0.0159	.0184	.01854	200	200	40	6

Table S1 Detailed composition and amount of ingredients required for the synthesis of CH₃NH₃PbI₃ based HPQDs.

Figure S1: TEM and HR-TEM imageof CH₃NH₃PbI₃ (MAPbI₃) hybrid perovskite quantum dots synthesized via a modified low temperature route.

Figure S2: Comparision of bulk and PQDs of CH₃NH₃PbI₃ (a and b) PL emission of CH₃NH₃PbI₃ QDs and bulk material respectively and (c) UV-visible absorbance spectra of CH₃NH₃PbI₃ QDs and bulk material.

Figure 3: (a) Variation of PL emission spectra from 0% to 60% and decomposition of PL peaks into two Gaussian curves, and the (b) comparison of PL excitation spectra for pure and 30% doped $CH_3NH_3Pb_{1-x}Mn_xI_3$ PQDs by monitoring the excitonic and Mn^{2+} related emissions.

Color coordinate diagram:

The influence of Pb²⁺ to Mn²⁺ cation exchange on colorcoordinates of CH₃NH₃Pb_{1-x}Mn_xI₃ PQDs is shown in the commission International deL'Eclairage (CIE) chromaticity diagrams to better enable the comparison of color variation (Fig. S2(d)). With the gradual substitution of Pb²⁺ by Mn²⁺, the emission color changed from red/pink to orange for the 5 to 60% Mn²⁺ doped PQDs and CIE co-ordinates lies between (x= 0.67 to 0.60 and y= 0.30 to 0.40).

Figure S4: PL life time deacy curves (a)TRPL of pure $CH_3NH_3PbI_3$ and 5% Mn^{2+} doped PQDs fitted with mono-exponential fitting (b) TRPL of 10 - 30% and (c) 35-60% Mn^{2+} incorporated emplace of Pb^{2+} in $CH_3NH_3Pb_{1-x}Mn_xI_3$ PQDs with dual-exponential fitting, (d) graph between average life-time and Mn^{2+} concentration in $CH_3NH_3Pb_{1-x}Mn_xI_3$ PQDs

Figure S5: Graph between PLQY and average life-timefor different concentration of Mn²⁺ concentration in CH₃NH₃Pb_{1-x}Mn_xI₃ PQDs

Figure S6: Transition mechnism in perovskite with Mn incorporation