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1. General Methods and Equipment 
 

Reagents were purchased from Sigma-Aldrich Co. Ltd., Dorset, UK. In the case of 3,4-

dihydroxybenzhydrazide 1, the supplier was Fluorochem, Derbyshire. Permanent magnets were bought 

from e-magnets UK, Hertfordshire, UK.  

Reversed-phase HPLC purification was performed on an Agilent 1100 series system with an Agilent Eclipse 

XDB-C18 (9.4 mm × 250 mm) column. Sonication of nanoparticles during the coating process was 

performed with a Sonics VCX130PB Ultrasonic Processor with a stepped micro tip (3 mm × 136 mm) at 20 

kHz.  

NMR spectra were recorded in deuterated solvents using a Brüker 400 MHz Avance spectrometer with 

broadband probe or a Brüker 800 MHz Avance III. NMR chemical shift values are referenced to residual 

peaks from non-deuterated solvent and measured in ppm. Splitting patterns are reported as singlets (s), 

doublets (d), triplets (t), quartets (q), multiplets (m) or a combination of the above and coupling constants 

are measured in Hz. Electrospray mass spectrometry was performed on a Micromass LCT instrument using 

a Waters 2790 separations module with electrospray ionization and TOF fragment detection. High 

resolution mass spectrometry was performed on a Water Q-TOF micro with an ES+/- ion source. Elemental 

analysis was performed using a Thermo Scientific FLASH 2000 series CHNS/O Analyser. DLS and zeta 

potential measurements were carried out using a Malvern Zetasizer Nano. 

 

 

1.1 Abbreviations 

 

FC, field cooled; HPLC, high performance liquid chromatography; ICP-AES, inductively coupled plasma 

atomic emission spectroscopy; MNP, magnetic nanoparticle; NMR, nuclear magnetic resonance; SQUID, 

superconducting quantum interference device; TEM, transmission electron microscopy; THF, 

tetrahydrofuran; XRD, X-ray diffraction; ZFC, zero field cooled. 
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2. Synthesis of Saccharide-Hydrazide Adducts 
 

2.1 General experimental procedure for adduct synthesis 

The synthesis of compounds 2-12 was performed according to the following general procedure. 

The saccharide (0.3 mmol) and 3,4-dihydroxybenzhydrazide 1 (0.3 mmol) were added to methanol (10 mL) 

containing aniline (5 mM from stock solution) and heated to reflux at 65 °C under nitrogen with stirring 

overnight. The solvent was removed in vacuo and the crude product was dissolved in a minimum of water, 

filtered if necessary to remove particulate material and purified by HPLC (see Section 2.3). The product 

containing fractions were collected and freeze dried to give the product as a white powder in all cases. 

 

2.2 Comparison of different basic catalysts 

NMR tube reactions were carried out in d4-methanol in order to assess the effectiveness of each catalyst. 

Each tube was filled with 3,4-dihydroxybenzhydrazide 1 (3 mg, 0.018 mmol) and glucose (4.8 mg, 

0.018 mmol), as well a 5 mM stock solution of the catalyst in d4-methanol (0.6 mL). A control was also set 

up containing 1, glucose and d4-methanol with no catalyst present. 1H NMR spectra were measured at 

0 hours and the NMR tubes were then placed in an oil bath at 65 °C. Further 1H NMR spectra were 

measured at 1, 2, 4, 6, 8 and 24 h. The yields were calculated by integrating the anomeric peaks of glucose 

and the glucose adduct 2. Taking the integrals of the α- and β-anomers of the product and dividing by the 

integrals of all glucose anomeric peaks (i.e. α and β for both product and starting material) gave a crude 

relative yield which could be converted into a percentage yield by multiplying by 100. 

The aniline-catalysed reaction produced the product in better yields that the uncatalysed reaction. Both p-

phenylenediamine and anthranilic acid catalysed the reaction much better than aniline (Figure S2.1) with 

yields in excess of 80%, comparable to values previously described in the literature.1,2  

 

Figure S2.1: Chart showing the change in integral ratio for the sum of α and β anomeric resonances for 2 compared to 2 + glucose 

in the 
1
H NMR spectra of glucose mixed with 3,4-dihydroxybenzhydrazide 1 in fresh solvent with different catalysts. Each solution 

was heated at 65 °C over 24 h. Ratio calculated [anomeric peaks of 2 / (anomeric peaks of 2 + anomeric peaks of glucose) × 100]. 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 6 8 24

R
at

io
 o

f 
P

ro
d

u
ct

 t
o

 S
ta

rt
in

g 
M

at
e

ri
al

 
In

te
gr

al
s 

/ 
%

 

Time / h 

No Catalyst Aniline p-Phenylenediamine Anthranilic Acid



S6 
 

2.3 General procedure for adduct purification 

1H NMR spectra of the crude products (e.g. the glucose adduct 2, Figure S2.2) showed that the reaction did 

not produce many by-products, although the reaction does not go to completion after 24 h. 1H NMR 

spectroscopy shows the crude product as a mixture of anomers as well as the anomeric peaks from the 

starting saccharide and the aromatic peaks from the starting hydrazide 1. The peaks from the catalyst can 

also be observed further downfield (Figure S2.2 inset), although they are sometimes obscured by the 

aromatic peaks of the benzhydrazide 1. 

 

 
Figure S2.2: Labelled crude 

1
H NMR spectrum of glucose-hydrazide adduct 2 in d4-methanol from 2.95 to 5.15 ppm. Inset: Region 

from 6.65 to 7.35 ppm. 

 

It was possible to remove some unreacted hydrazide 1 from the crude reaction mixture by first removing 

the methanol under reduced pressure before redissolving the crude reaction mixture in Milli-Q filtered 

water (5 mL), causing some of the hydrazide to precipitate out, and filtering through cotton wool. However, 

this did not remove all of the hydrazide and did not remove unreacted saccharide and catalyst from the 

filtrate. For this reason the reaction mixture (typically ~60 mg of crude material) was purified by 

high-performance liquid chromatography (HPLC) in the reversed-phase mode. The non-polar stationary 

phase was a C18 column and the polar mobile phase was a mixture of water and tetrahydrofuran (THF) 

(v/v 95%/5%). A semi-preparative column (9.4 mm × 250 mm) was used and through purification of several 

aliquots of 0.5 mL, the entire crude reaction mixture of approximately 60 mg could usually be purified 

during one day. In order to elute less polar compounds, the proportion of THF (the less polar solvent) was 

increased from 5% to 50% over 40 mins. Typical retention times for monosaccharide adducts were from 14 

to 18 mins at 1 mL/min. The column was then washed with a mixture of water/THF 5%/95% for a further 30 

mins to remove all remaining material before the next crude sample was purified.  

Starting material and  

product aromatic peaks 

Methanol 

Water 

Starting material 

anomeric peaks 
Product 

anomeric peaks 

Starting material and 

product saccharide peaks 
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The collected fractions were then concentrated under reduced pressure in order to remove the THF, before 

being lyophilised to give the products, as a mixture of α and β anomers, as white powders. In all, eleven 

small saccharides were used to form the library of saccharide adducts 2-12 (Figure S2.3). 

 

Figure S2.3: Structures of saccharide hydrazide adducts 2-12. Adducts 2 – 5 reported previously.
3
 

 

2.4 General procedure for determining α:β ratio in adducts 

 

The α:β anomeric ratios in saccharide adducts were determined using 1H NMR spectroscopy. The peaks 

corresponding to the α and β anomer signals were integrated and a percentage for each was calculated 

using either (α/(α + β)) × 100 or (β/(α + β)) × 100.  

For example, in the case of 2 the α anomer was calculated to be (0.11/(0.11 + 0.92)) × 100 = 11% and the β 

anomer was calculated to be (0.92/(0.11 + 0.92)) × 100 = 89% (Figure S2.4). 
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Figure S2.4: 
1
H NMR spectrum of saccharide adduct 2 showing the integrals of the anomeric peaks, with the α anomer at 4.53 ppm 

and the β anomer at 3.93 ppm. 
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2.5 Characterisation data for adducts 2 - 12 

In each case the reported NMR spectroscopy data is for both anomers, but usually only the major β anomer 

is detected in the 13C NMR spectra. 

2.5.1 3,4-Dihydroxy-N’-(1-deoxyglucopyranos-1-yl)-benzohydrazide 2  

Yield: 79 mg, 75%, 11:89 mixture of α/β-anomers in methanol-d4. Spectroscopic data matched that 

previously reported.3 

1H NMR (400 MHz, CD3OD): δ 7.21 (d, 1H, J = 2.1 Hz, 7), 7.15 (dd, 1H, J1 = 8.3 Hz, J2 = 2.2 Hz, 8), 6.75 (d, 1H, J 

= 8.3 Hz, 9), 4.53 (d, 0.11H, J = 4.9 Hz, 1 α), 3.92 (d, 0.89H, J = 8.8 Hz, 1 β), 3.85 (dd, 1H, J1 = 11.7 Hz, J2 =2.3 

Hz, 6a), 3.58 (dd, 1H, J1 = 11.6 Hz, J2 = 6.5 Hz, 6b), 3.37 (t, 1H, J = 9.0 Hz, 3), 3.29-3.23 (m, MeOH obscuring 

5), 3.20-3.13 (m, 2H, 2, 4). 

13C NMR (101 MHz, CD3OD): δ 170.4, 150.5, 146.4, 125.2, 120.9, 115.9 (2C), 92.4, 79.0, 78.3, 72.6, 71.7, 

63.0. 

HRMS for [(C13H18N2O8) + H+]+ expected 331.1136 found 331.1137.  

Anal. Calcd. For C13H18N2O8 (+ H2O): C, 44.83, H, 5.79, N, 8.04. Found: C, 44.71, H, 6.19, N, 7.82. 

 

2.5.2 3,4-Dihydroxy-N’-(4-O-(β-galactosyl)-1-deoxyglucopyranos-1-yl)-benzohydrazide 3  

Yield: 109 mg, 74%, 10:90 mixture of α/β-anomers in methanol-d4. Spectroscopic data matched that 

previously reported.3 

1H NMR (400 MHz, CD3OD): δ 7.24 (d, 1H, J = 2.0 Hz, 13), 7.17 (dd, 1H, J1 = 8.3 Hz, J2 = 2.0 Hz, 14), 6.78 (d, 

1H, J1 = 8.3 Hz, 15), 4.57 (d, 0.10H, J = 5.1 Hz, 1 α), 4.29 (d, 1H, J = 7.6 Hz, 7), 4.00 (d, 0.90H, J = 8.9 Hz, 1 β), 

3.92 (dd, 1H, J1 = 11.8 Hz, J2 = 1.8 Hz, 6a), 3.81-3.71 (m, 3H, 5, 12a, 12b), 3.65 (dd, 1H, J1 = 11.7 Hz, J2 = 4.5 

Hz, 6b), 3.59-3.40 (m, 6H, 3, 4, 8, 9, 10, 11), 3.29-3.24 (MeOH peak obscuring 2). 

13C NMR (101 MHz, CD3OD): δ 170.5, 150.6, 146.4, 125.2, 120.9, 116.4, 115.9, 105.1, 92.2, 80.4, 77.7, 77.1, 

76.6, 74.8, 72.5, 72.2, 70.3, 62.5, 62.1. 

HRMS for [(C19H28N2O13)+ H+]+ expected 493.1664 found 493.1666.  

 

2.5.3 3,4-Dihydroxy-N’-(1-deoxy-4-O-(3-O-(N-acetyl-α-neuraminosyl)-β-
galactopyranosyl)glucopyranos-1-yl)-benzohydrazide 4 

The synthesis of glycoadduct 4 was performed on a smaller scale, using 0.12 mmol of hydrazide and 

saccharide.  

Yield: 61 mg, 63%, 9:91 mixture of α/β-anomers in methanol-d4. Spectroscopic data matched that 

previously reported.3 

1H NMR (400 MHz, CD3OD): δ 7.25 (d, 1H, J = 2.1 Hz, 21), 7.19 (dd, 1H, J1 = 8.3 Hz, J2 = 2.1 Hz, 22), 6.78 (d, 

1H, J = 8.3 Hz, 23), 4.47 (d, 0.09H, J = 7.8 Hz, 1 α), 4.36 (d, 1H, J = 7.8 Hz, 7), 4.05-3.98 (m, 1.91H, 1 β, 16), 

3.95 (dd, 1H, J1 = 11.7 Hz, J2 = 2.1 Hz, 6a), 3.90-3.40 (m, 18H, 2-5, 6b, 8-12, 14-15, 17-19), 2.83 (ddd, 1H, J1 = 

12.4 Hz, J2 = 2.1 Hz, J3 = 2.1 Hz, 13a), 1.98 (s, 3H, 20), 1.70 (ddd, 1H, J1 = 11.0 Hz, J2 = 8.0 Hz, J3 = 3.2 Hz, 13b). 
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13C NMR (101 MHz, CD3OD): δ 175.5, 174.9, 170.7, 150.5, 146.4, 125.2, 121.0, 116.0, 115.9, 105.1, 101.0, 

91.8, 80.6, 77.7, 77.6, 77.1, 76.5, 74.9, 73.0, 72.0, 70.7, 70.1, 69.3, 69.0, 64.6, 62.7, 61.9, 53.9, 42.1, 22.6. 

HRMS for [(C30H45N3O21) + H+]+ expected 784.2618 found 784.2604. 

 

2.5.4 3,4-Dihydroxy-N’-(1,2-dideoxy-2-(acetylamino)-glucopyranos-1-yl)-benzohydrazide 5 

Yield: 82 mg, 70%, 14:86 mixture of α/β-anomers in methanol-d4. Spectroscopic data matched that 

previously reported.3 

1H NMR (400 MHz, CD3OD): δ 7.26 (d, 1H, J = 2.1 Hz, 8), 7.19 (dd, 1H, J1 = 8.3 Hz, J2 = 2.1 Hz, 9), 6.79 (d, 1H, J 

= 8.3 Hz, 10), 4.60 (d, 0.14H, J = 4.8 Hz, 1 α), 4.02 (d, 0.86H, J = 9.5 Hz, 1 β), 3.83 (dd, 1H, J1 = 12.0 Hz, J2 = 

1.9 Hz, 6a), 3.76 (t, 1H, J = 9.9 Hz, 2), 3.58 (dd, 1H, J1 = 12.0 Hz, J2 = 6.3 Hz, 6b), 3.46 (t, 1H, J = 9.0 Hz, 3), 

3.26-3.17 (m, 2H, 5, 4), 2.05 (s, 3H, 7). 

13C NMR (101 MHz, CD3OD): δ 175.2, 168.6, 150.5, 146.5, 125.2, 120.5, 116.0, 115.5, 91.4, 79.3, 76.3, 72.4, 

63.1, 54.7, 22.9. 

HRMS for [(C15H21N3O8) + Na+]+ expected 394.1221 found 394.1217.  

 

2.5.5 3,4-Dihydroxy-N’-(1,2-dideoxyglucopyranos-1-yl)-benzohydrazide 6  

 

Yield: 30 mg, 61%, 22:78 mixture of α/β-anomers in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.23 (d, 1H, J = 2.1 Hz, 7), 7.16 (dd, 1H, J1 = 8.3 Hz, J2 = 2.0 Hz, 8), 6.77 (d, 1H, J 

= 8.3 Hz, 9), 4.68 (d, 0.22H, J1 = 4.5, 1 α), 4.23 (dd, 0.78H, J1 = 10.8, J2 = 1.7 Hz, 1 β), 3.87 (dd, 1H, J1 = 11.5 

Hz, J2 = 2.3 Hz, 6a), 3.63 (dd, 1H, J1 = 11.6 Hz, J2 = 6.3 Hz, 6b), 3.60-3.53 (m, 1H, 3), 3.21 (ddd, 1H, J1 = 9.5 Hz, 

J2 = 6.3 Hz, J3 = 2.4 Hz, 5), 3.11 (t, 1H, J = 9.5 Hz, 4), 2.18 (ddd, 1H, J1 = 12.5 Hz, J2 = 5.1 Hz, J3 = 1.5 Hz, 2a), 

1.46 (dt, 1H, J1 = 12.4 Hz, J2 = 11.4 Hz, 2b). 

13C NMR (101 MHz, CD3OD): δ 169.9, 150.2, 146.4, 120.8, 120.4, 115.9, 115.6, 88.6, 79.0, 73.2, 73.1, 63.2, 

37.8. 

HRMS for [(C13H18N2O7) + Na+]+ expected 337.1006 found 337.1002.  

 

2.5.6 3,4-Dihydroxy-N’-(1-deoxymannopyranos-1-yl)-benzohydrazide 7  

The synthesis of glycoadduct 7 was performed on a smaller scale, using 0.24 mmol of hydrazide and 

saccharide.  
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Yield: 45 mg, 57%, >99 % β-anomer in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.23 (d, 1H, J = 2.1 Hz, 7), 7.17 (dd, 1H, J1 = 8.3 Hz, J2 = 2.2 Hz, 8), 6.78 (d, 1H, J 

= 8.3 Hz, 9), 4.17 (d, 1H, J = 0.7 Hz, 1 β), 3.99 (d, 1H, J = 2.8 Hz, 2), 3.89 (dd, 1H, J1 = 11.6 Hz, J2 = 2.4 Hz, 6a), 

3.63 (dd, 1H, J1 = 11.6 Hz, J2 = 7.2 Hz, 6b), 3.51-3.42 (m, 2H, 3, 4),  3.20 (ddd, 1H, J1 = 8.7 Hz, J2 = 7.0 Hz, 

J3 = 2.3 Hz, 5). 

13C NMR (101 MHz, D2O + CD3OD): δ 170.1, 149.5, 145.3, 125.3, 121.5, 116.5, 115.9, 89.0, 78.5, 74.8, 71.0, 

68.3, 62.4. 

HRMS for [(C13H18N2O8) + H+]+ expected 331.1136 found 331.1148.  

 

2.5.7 3,4-Dihydroxy-N’-(1-deoxyfucopyranos-1-yl)-benzohydrazide 8  

The synthesis of glycoadduct 8 was performed on a smaller scale, using 0.16 mmol of hydrazide and 

saccharide.  

 

Yield: 24 mg, 45%, 19:81 mixture of α/β-anomers in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.23 (d, 1H, J = 2.2 Hz, 7), 7.17 (dd, 1H, J1 = 8.2 Hz, J2 = 2.2 Hz, 8), 6.77 (d, 1H, J 

= 8.3 Hz, 9), 4.58 (d, 0.19H, J = 5.0 Hz, 1 α), 3.91 (d, 0.81H, J = 8.3 Hz, 1 β), 3.63 (qd, 1H, J1 = 6.5 Hz, J2 = 

0.9 Hz, 5), 3.58 (dd, 1H, J1 = 3.1 Hz, J2 = 0.9 Hz, 4), 3.53-3.45 (m, 2H, 3, 2), 1.24 (d, 3H, J = 6.4 Hz, 6). 

13C NMR (101 MHz, CD3OD): δ 170.5, 150.6, 146.4, 125.3, 120.9, 115.9, 115.9, 92.7, 75.4, 73.4, 73.2, 69.5, 

17.0. 

HRMS for [(C13H18N2O7) + Na+)+ expected 337.1006 found 337.1025.  
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2.5.8 3,4-Dihydroxy-N’-(4-O-(β-galactosyl)-1,2-dideoxy-2-(acetylamino)-glucopyranos-1-yl)-
benzohydrazide 9  

 

The synthesis of glycoadduct 9 was performed on a smaller scale, using 0.07 mmol of hydrazide and 

saccharide. 

Yield: 3.1 mg, 8%, 10:90 mixture of α/β-anomers in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.26 (d, 1H, J = 2.1 Hz, 14), 7.19 (dd, 1H, J1 = 8.3 Hz, J2 = 2.1 Hz, 15), 6.78 (d, 

1H, J = 8.3 Hz, 16), 4.63 (d, 0.10H, J = 4.5 Hz, 1 α), 4.29 (d, 1H, J = 7.5 Hz, 7), 4.04 (d, 0.90H, J = 9.5 Hz, 1 β), 

3.89 (dd, 1H, J1 = 12.0 Hz, J2 = 2.1 Hz, 6a), 3.84 (t, 1H, J = 9.7 Hz, 2), 3.78-3.69 (m, 3H, 6b, 12), 3.67-3.60 (m, 

2H, 3, 10), 3.56-3.39 (m, 5H, 4, 5, 8, 9, 11), 2.03 (s, 3H, 13). 

13C NMR (101 MHz, CD3OD): δ 175.0, 173.6, 150.5, 146.5, 125.2, 120.5, 116.0, 115.5, 111.2, 105.1, 81.1, 

78.0, 77.1, 76.4, 74.8, 74.4, 72.6, 70.3, 62.5, 54.1, 22.9. 

HRMS for [(C21H31N3O13) + Na+]+ expected 556.1749 found 556.1760. 

 

2.5.9 3,4-Dihydroxy-N’-(1,2-dideoxy-2-(amino)-glucopyranos-1-yl)-benzohydrazide 10 

 

Yield: 30 mg, 30%, >99% β-anomer in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.26 (d, 1H, J = 2.2 Hz, 7), 7.21 (dd, 1H, J1 = 8.3 Hz, J2 = 2.2 Hz, 8), 6.80 (d, 1H, J 

= 8.3 Hz, 9), 4.26 (d, 1H, J = 9.6 Hz, 1 β), 3.90 (dd, 1H, J1 = 11.6 Hz, J2 = 2.3 Hz, 6a), 3.67 (dd, 1H, J1 = 11.6 Hz, 

J2 = 6.0 Hz, 6b), 3.52 (dd, 1H, J1 = 10.0 Hz, J2 = 8.6 Hz, 3), 3.35 (ddd, 1H, J1 = 9.7 Hz, J2 = 6.0 Hz, J3 = 2.3 Hz, 5), 

3.25 (dd, 1H, J1 = 9.6 Hz, J2 = 8.7 Hz, 4), 2.82 (t, 1H, J = 10.0 Hz, 2). 

13C NMR (101 MHz, CD3OD): δ 181.9, 150.9, 146.5, 124.7, 121.2, 116.1, 115.9, 88.2, 79.5, 74.7, 71.8, 62.5, 

54.7. 

HRMS for [C13H20N3O7]
+ expected 330.1296 found 330.1291.  

Anal. Calcd. For C13H19N3O7 (+ HCl, +2 H2O): C, 38.86, H, 6.02, N, 10.46, Cl, 8.82. Found: C, 38.65, H, 5.83, N, 

10.26, Cl, 9.35. 
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2.5.10 3,4-Dihydroxy-N’-(1-deoxygalactopyranos-1-yl)-benzohydrazide 11  

 

Yield: 46 mg, 45%, 15:85 mixture of α/β-anomers in methanol-d4. 

1H NMR (400 MHz, CD3OD): δ 7.28 (d, 1H, J = 1.4 Hz, 7), 7.22 (dd, 1H, J1 = 8.3 Hz, J2 = 1.4 Hz, 8), 6.81 (d, 1H, J 

= 8.2 Hz, 9), 4.65 (d, 0.15H, J = 5.6 Hz, 1 α), 3.94 (d, 0.85H, J = 8.6 Hz, 1 β), 3.85-3.79 (m, 2H, 4, 6a), 3.58 (dd, 

1H, J1 = 11.3 Hz, J2 = 4.1 Hz, 6b), 3.60-3.53 (m, 3H, 2, 3, 5). 

13C NMR (101 MHz, CD3OD): δ 170.4, 150.5, 146.4, 125.4, 120.9, 115.9, 115.9, 93.2, 78.0, 75.3, 70.6, 70.0, 

63.1. 

HRMS for [(C13H18N2O8) + H+]+ expected 331.1136 found 331.1132.  

 

2.5.11 3,4-Dihydroxy-N’-(1-deoxy-6-deoxy-(6-phosphoryloxy)-glucopyranos-1-yl)-benzohydrazide 
disodium salt 12  

 

Yield: 73 mg, 56%, >99% β-anomer in deuterium oxide. 

1H NMR (400 MHz, D2O): δ 7.20 (d, 1H, J = 1.8 Hz, 7), 7.16 (dd, 1H, J1 = 8.3 Hz, J2 = 1.8 Hz, 8), 6.83 (d, 1H, J1 = 

8.3 Hz, 9), 4.14 (d, 1H, J = 9.0 Hz, 1 β), 4.00-3.95 (m, 2H, 6a, 6b), 3.54-3.49 (m, 2H, 3, 4),  3.47-3.42 (m, 1H, 

5), 3.33 (dd, 1H, J1 = 8.8 Hz, J2 = 4.4 Hz, 2). 

13C NMR (101 MHz, D2O): δ 170.2, 151.1, 145.1, 122.2, 120.7, 116.0, 114.5, 90.0, 76.5, 75.7, 70.8, 69.1, 62.9. 

HRMS for [(C13H17N2O11P)2- + H+ + 2Na+)+ expected 455.0438 found 455.0433. 

Anal. Calcd. For C13H17N2O11PNa2 (+ 3H2O): C, 30.72, H, 4.56, N, 5.51. Found: C, 30.60, H, 4.17, N, 5.21. 

  



S14 
 

3. 1H and 13C NMR spectra of reported compounds 2 -5 
 

3.1.1 
1
H NMR spectrum for glucose adduct 2 (11:89 α:β, CD3OD) 

 

3.1.2 
13

C NMR spectrum for glucose adduct 2 (11:89 α:β, CD3OD) 
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3.1.3 
1
H NMR spectrum for lactose adduct 3 (10:90 α:β, CD3OD) 

 

3.1.4 
13

C NMR spectrum for lactose adduct 3 (10:90 α:β, CD3OD) 
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3.1.5 
1
H NMR spectrum for sialyllactose adduct 4 (9:91 α:β, CD3OD) 

 

3.1.6 
13

C NMR spectrum for sialyllactose adduct 4 (9:91 α:β, CD3OD) 
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3.1.7 
1
H NMR spectrum for N-acetylglucosamine adduct 5 (14:86 α:β, CD3OD) 

 

3.1.8 
13

C NMR spectrum for N-acetylglucosamine adduct 5 (14:86 α:β, CD3OD) 
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4. 1H and 13C NMR spectra of new compounds 6 -12 
 

4.1.1 
1
H NMR spectrum for 2-deoxyglucose adduct 6 (22:78 α:β, CD3OD) 

 

4.1.2 
13

C NMR spectrum for 2-deoxyglucose adduct 6 (22:78 α:β, CD3OD) 
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4.1.3 
1
H NMR spectrum for mannose adduct 7 (>99 % β, CD3OD) 

 

4.1.4 
13

C NMR spectrum for mannose adduct 7 (>99 % β, CD3OD) 
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4.1.5 
1
H NMR spectrum for L-fucose adduct 8 (19:81 α:β, CD3OD) 

 

4.1.6 
13

C NMR spectrum for L-fucose adduct 8 (19:81 α:β, CD3OD) 
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4.1.7 
1
H NMR spectrum for N-acetyllactosamine adduct 9 (10:90 α:β, CD3OD) 

 

4.1.8 
13

C NMR spectrum for N-acetyllactosamine adduct 9 (10:90 α:β, CD3OD) 
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4.1.9 
1
H NMR spectrum for glucosamine adduct 10 (>99% β, CD3OD) 

 

4.1.10 
13

C NMR spectrum for glucosamine adduct 10 (>99% β, CD3OD) 
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4.1.11 
1
H NMR spectrum for galactose adduct 11 (15:85 α:β, CD3OD) 

 

4.1.12 
13

C NMR spectrum for galactose adduct 11 (15:85 α:β, CD3OD) 
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4.1.13 
1
H NMR spectrum for glucose-6-phosphate adduct 12 (>99% β, D2O) 

 

4.1.14 
13

C NMR spectrum for glucose-6-phosphate adduct 12 (>99% β, D2O) 
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5. XRD for uncoated MNPs and MNPs coated with 2-8 and 10-12. 
 

 

Figure S5.1: XRD spectral lines of uncoated MNPs, 2-MNPs to 8-MNPs and 10-MNPs to 12-MNPs. 

 

Samples 2-8-MNP and 10-12-MNPs, as well as uncoated MNPs, were characterised by XRD. These XRD 

spectra are all very similar, consistent with the X-rays interacting weakly with the organic coatings and 

more strongly with the iron oxide surface. The recorded spectra gave peaks at scattering angles of 18.60, 

30.30, 35.73, 43.50, 53.70, 57.32, and 63.02 degrees (Figure S5.1), which match with the (111), (220), (311), 

(400), (422), (511), (440) diffraction peaks of magnetite.4 
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6. TEM measurements of uncoated MNP size distribution 
 

The diameters of the synthesized nanoparticles was measured from TEM images using imageJ software 

(n = 100). The sizes were grouped in intervals of 2 nm, and the number of particles in each group was 

counted (Figure S6.1). The mean diameter was calculated as 8.3 nm, with a standard deviation of 2.4 nm. 

 

 

Figure S6.1: Size distribution graph of MNPs imaged by TEM (n = 100) 
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7. Inductively Coupled Plasma Atomic Emission Spectroscopy 
 

ICP-AES measurements were obtained with the assistance of Mr. Paul Lythgoe, School of Earth & 

Environmental Sciences, University of Manchester. 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used to determine the presence 

and concentration of the saccharide-catechol adducts on the coated MNPs. As carbon, oxygen, nitrogen 

and hydrogen cannot be accurately measured by this technique, 12-coated MNPs were investigated as 

phosphorus is suitable for ICP-AES analysis. 

A sample of 12-MNPs were prepared by dissolving completely in hydrochloric acid (15% w/v) at a 

concentration of 1 mg/mL and measured by ICP-AES. 

The reported concentration of phosphorus was 16.41 mg/L or 0.01641 mg/mL. Phosphorus therefore 

accounted for 1.64% of 12-MNP. Phosphorus (MW = 31 g/mol) was calculated to be 6.83% of the mass of 

coating molecule 12, consequently molecule 12 (C13H17N2O11PNa2, MW = 454 g/mol) is 24.0% of the weight 

of 12-MNP. These magnetite nanoparticles have a density of 5.15 g/cm3 and a radius of 4.16 nm (see 

Section 4.3) therefore weigh 1.55 × 10-18 g each. The amount of coating present on 12-MNP is 

4.8 × 10−19 g/particle or 1.06 × 10−21 mol/particle. If coating molecule 2 is assumed to have a rotation radius 

on the nanoparticle of 2.5 × 10-10 m then it will occupy 2 × 10-19 m2/molecule or 1.2 × 105 m2/mol. Molecule 

12 therefore covers 1.27 × 10-16 m2 of the surface of each nanoparticle. MNPs with radius 4.16 nm have a 

surface area of 2.17 × 10-16 m2 therefore the coating molecule covers around 59% of the available surface 

area of each particle, a value similar to previous estimations.5  

 

 

8. Estimation of the concentration of GlcNAc on 5-MNPs 
 

Since 12-coated MNPs had 0.0164 g phosphorus per gram of 12-coated MNPs and 0.76 g Fe3O4 per gram of 

12-coated MNPs, there are 0.53 × 10-3 mol of 12 and 3.3 × 10-3 mol of Fe3O4 (9.8 × 10-3 mol of Fe) per gram 

of 12-coated MNPs. This gives a 5.4% mol/mol ratio of 12 to Fe.  

Assuming the extent of coating is the same for all saccharide-catechol adducts, 5-coated MNPs at 0.25 mM 

total [Fe] would have 13 μM of the saccharide displayed on the surface. 
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9. Additional MRI relaxation data 
 

9.1 Without WGA 

 

Figure S9.1: Image of MRI samples 1-6 in holder 

 

 

Sample # T2 (ms) T1 (ms) 

1 ([Fe] = 0.25 mM) 41 ± 1 2684 ± 86 
2 ([Fe] = 0.1 mM) 67 ± 1 2921 ± 80 
3 ([Fe] = 0.05 mM) 91 ± 1 2975 ± 70 
4 ([Fe] = 0.025 mM) 102.4 ± 0.3 2929 ± 63 
5 ([Fe] = 0.005 mM) 115.9 ± 0.2 3182 ± 77 
6 ([Fe] = 0 mM) 122.5 ± 0.2 3202+/-84 
X (centre, 0.2% magnevist in saline) 146.7 ± 0.1 241 ± 5 

Table S1: MRI relaxation data for GlcNAc-coated MNP samples without WGA. 
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9.2 With WGA 

 

Figure S9.2: Image of MRI samples 7-12 in holder 

 

 

Sample # T2 (ms) T1 (ms) 

7 ([Fe] = 0.25 mM) 42 ± 2 2791 ± 106 
8 ([Fe] = 0.1 mM) 70 ± 1 2984 ± 81 
9 ([Fe] = 0.05 mM) 90 ± 1 3022 ± 72 
10 ([Fe] = 0.025 mM) 101.6 ± 0.3 2973 ± 63 
11 ([Fe] = 0.005 mM) 115.6 ± 0.4 3276 ± 89 
12 ([Fe] = 0 mM) 121.4 ± 0.2 3274 ± 84 
X (centre, 0.2% magnevist in saline) 147.3 ± 0.1 245 ± 5 

Table S2: MRI relaxation data for GlcNAc-coated MNP samples with WGA. 

 

 

9.3 Plot of iron concentration against 1/T1 for GlcNAc-coated MNPs 

 

Figure S9.3: Plot of iron concentration against 1/T1 for GlcNAc-coated MNPs with (black squares) and without WGA (grey circles). 
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10. Dynamic light scattering and zeta potential measurements 
 

DLS and zeta potential measurements were carried out using a Malvern Zetasizer Nano ZSP 633 nm laser at 

25 °C. Coated MNPs were suspended in PBS (pH 7.4), Milli-Q water or HEPES buffer (20 mM, pH 7.5 with 

150 mM NaCl and 2 mM CaCl2) at concentrations of 6 × 10−7 mg/mL. Particles were suspended by 

sonication with a probe-type sonicator for 10 mins followed by filtration using a Minisart® syringe filter of 

200 µm. Measurements were proceed in folded capillary zeta cells with a scattering angle of 13° or 173°. 

The attenuation factor was 1.00 for all DLS samples. 

DLS parameters: Material Fe3O4, refractive index 2.420, absorption 0.00. Dispersant: water, 25 °C, viscosity 

0.8872 cP, refractive index 1.330. Equalisation time: 0 s. Each measurement was 10 runs, 1 s each. Analysis 

model: general purpose. 

Zeta potential parameters: Material Fe3O4, refractive index 2.420, absorption 0.00. Dispersant: water, 25 °C, 

viscosity 0.8872 cP, refractive index 1.330, dielectric constant 78.5. F(Ka) model: Smoluchowski. F(Ka) value: 

1.50. Each sample 2 measurements, 20 to 30 runs, 1 s each. Data processing: Auto mode. Mean count rate 

during measurements in Milli-Q water: uncoated MNPs, 133.0 Kcps; 1-coated MNPs, 94.7 Kcps; 4-coated 

MNPs, 79.3 Kcps; 9-coated MNPs, 148.7 Kcps. 

 

  

  

Figure S10.1: Plots showing DLS size distributions for (a) uncoated MNPs, (b) 1-coated MNPs, (c) 4-coated MNPs and (d) 9-coated 

MNPs. MNPs in Milli-Q water at 6 × 10
−7

 mg/mL. Recorded at a scatter angle of 173°. 
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uncoated MNPs 
 

1-coated MNPs 
 

4-coated MNPs 
 

9-coated MNPs 

Z-average  PdI 
 

Z-average  PdI 
 

Z-average  PdI 
 

Z-average  PdI 

288.3 0.591 
 

437 0.457 
 

380.8 0.36 
 

167.4 0.22 

  
 

  
 

  
 

  

  average sd 
 

  average sd 
 

  average sd 
 

  average sd 

Peak 1 81.18 37.62 
 

Peak 1 88.01 22.39 
 

Peak 1 152.8 39.91 
 

Peak 1 120.1 63.48 

Peak 2 901.3 355.4 
 

Peak 2 165.3 59.1 
 

Peak 2 1250 802.6 
 

Peak 2 4984 850.9 

Peak 3 2209 649.6 
 

Peak 3 4955 866.5 
         

Figure S10.2: Mean z-average diameter (or radius) and mean polydispersity index in the DLS data for uncoated MNPs, 1-coated 

MNPs and 4-coated MNPs in Milli-Q water at 6 × 10
−7

 mg/mL. Average sizes and standard deviation (s.d.) for each peak. Recorded 

at a scatter angle of 173°. 

 

 

9-coated MNPs 

Z-average  PdI 

55.86 1 

  

  average s.d. 

Peak 1 6.686 1.485 

      

 

Figure S10.3: (a) Plot showing DLS size distribution for 9-coated MNPs recorded at a scatter angle of 13°, soon after sonication. 

MNPs in Milli-Q water at 6 × 10
−7

 mg/mL. (b) Mean z-average diameter (or radius) and mean polydispersity index in these DLS data. 

Average size and standard deviation (s.d.) for peak. 
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Figure S10.4: Representative plots showing zeta potentials for uncoated MNPs, 4-coated MNPs, 9-coated MNPs and 1-coated MNPs 

in Milli-Q water at 6 × 10
−7

 mg/mL. 

a) 

b) 

c) 

d) 
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Figure S10.5: Average zeta potentials determined by DLS for uncoated MNPs (blue), 1-coated MNPs (red), 4-coated MNPs (green), 

and 9-coated MNPs (purple) in Milli-Q water, in PBS (pH 7.4), or HEPES buffer (20 mM, pH 7.5 with 150 mM NaCl and 2 mM CaCl2) 

at 6 × 10
−7

 mg/mL. 
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