Electronic Supporting Information

Design of core-shell titania-heteropolyacid-metal nanocomposites for

photocatalytic reduction of CO₂ to CO at ambient temperature

Xiang Yu, Simona Moldovan, Vitaly V. Ordomsky and Andrei Y. Khodakov

Figure S1. The schema of photocatalytic reactor

	Table S1. Z	n content in t	he Zn-HP	W/TiO ₂ con	posites fron	n XRF.
--	-------------	----------------	----------	------------------------	--------------	--------

Catalyst	Calculated Zn contents (wt.%)	Measured Zn contents (wt.%)
	0.5	0.5
	1.5	1.6
	3.0	2.9
$Zn-HPW/11O_2$	6.0	6.1
	10	10.3
	12	12.2

Figure S2. CO, O₂, CH₄ and H₂ formation rates over Zn-HPW/TiO₂ composites with different ratio of HPW/TiO₂. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CO₂ 0.2 MPa; H₂O, 15mL; irradiation time, 6h.

Figure S3. CO, O₂, CH₄ and H₂ formation rates over Zn-HPW/TiO₂ composites with different pressure. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CO₂ $0.2 \sim 0.5$ MPa; H₂O, 15mL; irradiation time, 6h.

Figure S4. XRD patterns of different nanocomposites catalysts.

Figure S5. FTIR spectra of the calcined Zn-HPW/TiO₂ (6wt.%) catalyst before and after adsorption of pyridine on the sample dehydrated at 200°C.

Figure S6 a. UV-Vis spectra of Zn-HPW/TiO₂ sample b. $[F(R\infty)hv]^{1/2}$ versus *hv* for Zn-HPW/TiO₂ sample

Figure S7. TEM images of the Zn-HPW/TiO $_2$ composite

Figure S8. High resolution STEM-HAADF images showing the formation of the core shell structures in Zn-HPW/TiO₂

Figure S9. Zn 2p XPS spectra of Zn-HPW/TiO₂ catalysts: a. fresh catalyst, b. used catalyst.

Figure S10. Zn $L_3M_{4.5}M_{4.5}$ Auger peaks for the Zn-HPW/TiO₂ catalysts; a. fresh catalyst, b. used catalyst.

Figure S11. In situ FTIR spectra of the gas phase over the Zn-HPW/TiO₂ catalyst measured under light at different reaction times in CO_2 and H_2O vapor.