Supporting Information

Transformation of Threshold Volatile Switching to Quantum Point Contact Originated Nonvolatile Switching in Graphene Interface Controlled Memory Devices

Zuheng Wu^{1,2,3}, Xiaolong Zhao¹, Yang Yang^{1,2}, Wei Wang¹, Xumeng Zhang^{1,2,3}, Rui

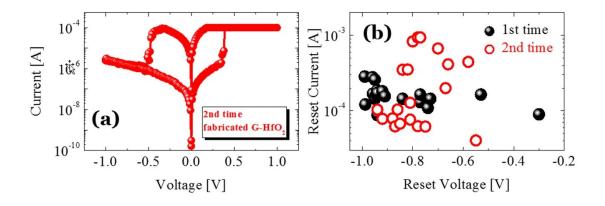
Wang^{1,2,3}, Rongrong Cao^{1,2,3}, Qi Liu^{1,3}, and Writam Banerjee^{1,3,4,*}

Keywords: resistive random access memory (RRAM), graphene, quantum conductance,

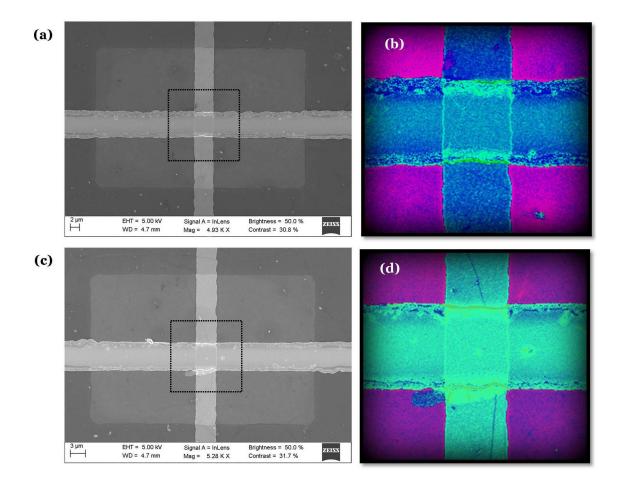
threshold switching, ECM

Figure S1: Performance comparison of MS mode with re-fabricated D2 devices.

Figure S2: Comparison of graphene film in D2 devices.


Figure S3: The TS in graphene-based devices.

¹Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, No. 3, BeiTuCheng West Road, ChaoYang District, Beijing 100029, P. R. China.


²University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R.China 100049.

³Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 210009, P. R. China.

⁴Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea. *E-mail: writam@postech.ac.kr

Figure S1: Performance comparison of MS mode with re-fabricated D2 devices. (a) The I-V switching characteristics of the 2nd-time fabricated graphene-based D2 devices. (b) The device-to-device variation of the reset current with reset voltage is showing symmetrical performances of the 1st-time and 2nd-time fabricated graphene-based D2 devices.

Figure S2: Comparison of graphene film in D2 devices. The SEM image of the D2 device (a) without and (c) with grain-boundary. Pseudo-colored SEM image of (b) a good cross-point and (d) a cross-point with prominent grain.

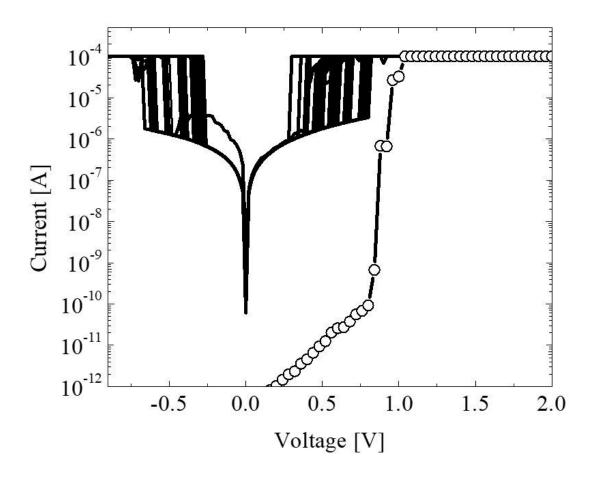


Figure S3: The TS in graphene-based devices. Defective graphene-barrier needed lower forming voltage $\sim + 1$ V, can introduce bi-direction TS behavior in the graphene-based devices.