Supporting Information

Ultrafine PdAu Nanoparticles Immobilized on Amine Functionalized Carbon Black toward

Fast Dehydrogenation of Formic Acid at Room Temperature

Luming Wu,^a Baoxia Ni,^a Rui Chen,^a Chengxiang Shi,^a Pingchuan Sun,^{b,c} Tiehong Chen*,^{a,c}

^a Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key

Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350,

PR China

^b Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry,

Nankai University, Tianjin 300071, PR China

^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071,

PR China

* E-mail: chenth@nankai.edu.cn.

Figure S1. EDX pattern of the $Pd_{0.6}$ Au_{0.4}/VXC-72-NH₂.

Figure S2. (a) N_2 adsorption-desorption isotherms and (b) the corresponding PSD curves.

Figure S3. XRD patterns of $Pd_{0.6}Au_{0.4}/VXC-72-NH_2$ and $Pd_{0.6}Au_{0.4}/VXC-72$ after heat treatment at 773 K for 3 h in Ar atmosphere.

Figure S4. XRD patterns of the $Pd_{0.6}Au_{0.4}/VXC$ -72-NH₂ (a) before and (b) after catalysis.

Figure S5. TEM images and size distribution of $Pd_{0.6}Au_{0.4}/VXC$ -72-NH₂ after the 5th run.

Figure S6. XPS spectra of $Pd_{0.6}Au_{0.4}/VXC$ -72-NH₂ after after the 5th run.

Sample	$S_{BET} (m^2 \cdot g^{-1})$	Pore volume (cm ³ ·g ⁻¹)	Average pore size (nm) ^a
VXC-72	120	0.68	2.43
Acid treated VXC-72	119	0.65	2.43
VXC-72-NH ₂	103	0.57	2.33
Pd _{0.6} Au _{0.4} /VXC-72	105	0.42	2.43
Pd _{0.6} Au _{0.4} /VXC-72-NH ₂	108	0.35	2.33

 $\label{eq:stables} \begin{array}{l} \textbf{Table S1.} \ \text{The BET surface area and pore volume of various samples measured from N_2} \\ & \text{adsorption desorption isotherms.} \end{array}$

Catalyst	C (at%)	O (at%)	N (at%)	Si (at%)	Au (at%)	Pd (at%)
VXC-72	99.08	0.92				
Acid treated VXC-72	93.37	6.63				
VXC-72-NH ₂	85.32	10.70	1.98	2.00		
$Pd_{0.6}Au_{0.4}/VXC-72-NH_2$	87.30	7.46	2.18	2.21	0.28	0.57
Pd _{0.6} Au _{0.4} /VXC-72-NH ₂ (recycled)	90.01	7.31	1.83	1.86	0.26	0.54

Table S2. The C, O, N and Si atomic percentage in the samples as determined by XPS

Catalyst	Pd (wt%)	Au (wt%)
Pd/VXC-72-NH ₂	1.75	
Pd _{0.8} Au _{0.2} /VXC-72-NH ₂	1.41	0.62
Pd _{0.6} Au _{0.4} /VXC-72-NH ₂	1.06	1.31
Pd _{0.4} Au _{0.6} /VXC-72-NH ₂	0.71	1.92
Pd _{0.2} Au _{0.8} /VXC-72-NH ₂	0.36	2.62
Au/VXC-72-NH ₂		3.26
Pd _{0.6} Au _{0.4} /VXC-72	1.04	1.31
$Pd_{0.6}Au_{0.4}/VXC\text{-72-NH}_2 \text{ (recycled)}$	1.03	1.29

Table S3. The contents of Au and Pd in the samples determined by inductively coupled plasma-

atomic emission spectrometry (ICP-AES).