# Modulation of supramolecular self-assembly of an antimicrobial designer peptide by single amino acid substitution: Implications on peptide activity

Zhou Ye, Conrado Aparicio\*

MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA

\*E-mail: apari003@umn.edu

## **Materials and methods**

#### Peptide solution preparation

GL13K (GKIIKLKASLKLL-NH<sub>2</sub>), D-GL13K with all D-amino acids (Gkiiklkaslkll-NH<sub>2</sub>) and D-GL13K-I10 (Gkiiklkasikll-NH<sub>2</sub>) were purchased from AAPPTec, LLC (Louisville, KY, USA) with purity >98%. GL13K analogues (A3, A5, A6, A7, A10, A11, and A13) and GL13-NH<sub>2</sub> were kindly donated by Professor Sven Gorr, University of Minnesota School of Dentistry. Stock solutions at a concentration of 10 mM were first prepared by dissolving peptides in deionized (DI) water. Borax-NaOH buffer solution at pH 9.6 was prepared by mixing 0.026 M borax solution with 0.1 M NaOH solution. To prepare the final peptide solution, 10  $\mu$ l of peptide stock solution was added into 990  $\mu$ l of buffer solution. All peptides were prepared in a pH 9.6 borax-NaOH buffer solution and incubated at room temperature until testing.

### Circular dichroism (CD)

CD spectra of GL13K, GL13K analogues (A3, A5, A6, A7, A10, A11, and A13) and GL13-NH<sub>2</sub> were measured immediately after dissolving in the buffer solutions (0d) and after 1d, 2d, and 5d incubation at room temperature. The CD signal was obtained from a 200  $\mu$ l peptide solution in a quartz cuvette with 1 mm path-length using a CD spectrometer (Jasco J-815, Easton, MD, USA). The measurements were averaged from 3 scans over a range from 260 nm to 190 nm with a data pitch of 1.0 nm, a scanning rate of 50 nm min<sup>-1</sup> and a response time of 2 s. Background signal from pristine buffer solution was subtracted from all spectra.

### Transmission electron microscopy (TEM)

After incubating for 1 day (for A11 analogue peptide) or 5 days (for all other peptides) at room temperature, 3  $\mu$ l of GL13K or the analogue peptides solution was dispersed onto a negatively charged copper grid with a carbon film. The specimen was first washed with a droplet of DI water and immediately blotted with a filter paper twice. Then the specimen was stained with 5  $\mu$ l of 0.75% uranyl formate for 45 s and blotted with a filter paper. After stained with 0.75% uranyl formate, the TEM sample was imaged using a FEI Tecnai G2 F30 (Hillsboro, Oregon, USA) at an accelerating voltage of 300 kV.

#### Estimation of secondary structure percentage

The secondary structure percentages of GL13K, GL13K analogues and GL13- NH<sub>2</sub> after 1 day incubation in the buffer solutions were estimated by the CDPro software (https://sites.bmb.colostate.edu/sreeram/CDPro/CDPro.htm, last accessed April 7, 2019) as described in detail elsewhere<sup>1</sup>. Briefly, the data were analyzed by three common methods in the software packages, SELCON3, CDSSTR and CONTIN/LL, with a reference set of 48 proteins (reference set 7 in CDPro software). The reported percentages were averages and standard deviations of the values estimated by the three methods.

## **Supplementary figures**

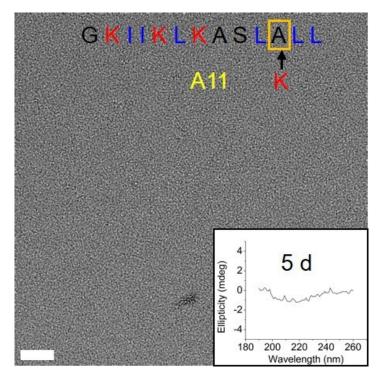



Figure S1. TEM micrographs and corresponding CD spectra of A11 after 5 day incubation. Scale bars are 50 nm.

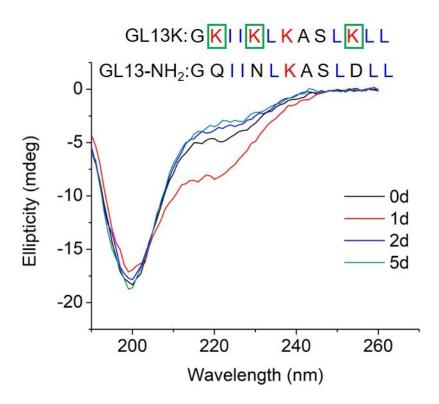



Figure S2. CD spectra of GL13-NH<sub>2</sub> in a pH 9.6 borax-NaOH buffer solution at room temperature. Percentage of unordered structure was estimated to be 72.4±14.1% and percentage of  $\beta$ -sheet was estimated to be 11.1±7.2% after 1 day incubation. The three amino acids that were substituted to lysine in the native GL13-NH2 peptide to derive the highly antimicrobial GL13K peptide are marked with green rectangles.

## **Reference:**

1 Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang and C. Aparicio, *Nanoscale*, 2019, **11**, 266–275.