Supplementary Information

Long-lifespan, flexible Zinc-ion secondary battery using paper-like cathode from single-atomic MnO₂ nanosheets

Yanan Wang^a, Zeyi Wu^a, Le Jiang^a, Wenchao Tian^a, Chenchen Zhang^b, Cailing Cai^a, Linfeng Hu^a*

- a. Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
- b. State Grid Anhui Electric Power Institute, Hefei, 230022, China
- * E-mail: linfenghu@fudan.edu.cn.

Contents:

Figure S1 - Figure S16

Figure S1 Zeta-potential curve of the as-exfoliated MnO_2 nanosheets dispersed in milli-Q water (40 mmol/L).

Figure S2 Typical TEM image and SAED pattern of MnO₂ single-layer nanosheets.

Figure S3. The $MnO_2/MWCNTs$ hybrid membrane was coiled around a glass rod to illustrate the excellent flexibility.

Figure S4 The tensile strength of the $MnO_2/MWCNTs$ membrane. It has a maximum tensile force of 2.74N, an elongation at break of 1.6%.

Figure S5 Top-view of the SEM images of the $MnO_2/MWCNTs$ membrane to show the smooth surface morphology.

Figure S6 (a) Survey XPS spectrum of MnO₂ and MnO₂/MWCNTs. (b-d) C 1s, Mn 2p, and O1s XPS spectra of MnO₂ NS/MWCNTs membrane. (e-g) C 1s, Mn 2p, and O1s XPS spectra of MnO₂ membrane, respectively. As shown in high-resolution C 1s spectrum (**Figure S6**b) for MnO₂/MWCNTs, combining with the MWCNTs, two group of spin-orbit resolved peaks can be resolved corresponding to C-O (286.4 eV) and C-C (285.4 eV), while the C 1s state in MnO₂ membrane (**Figure S6**e) exists in the form of C-C (285.4 eV).^{1,2} Mn 2p spectrum (**Figure S6**c, f) for MnO₂/MWCNTs and MnO₂ membranes, three group of spin-orbit resolved peaks can be resolved corresponding to Mn (2p1/2, 653.8 eV),³ Mn²⁺ (2p3/2, 643.5 eV) and Mn⁴⁺ (2p3/2, 642.5 eV),^{4,5} thus the Mn state in this hybrid exists in the form of Mn²⁺ and Mn⁴⁺. The deconvoluted O 1s spectrum (**Figure S6**d, g), only one peak can be resolved corresponding to O-Mn (529.3 eV).⁶

Figure S7 Thermal stability of the as-prepared MnO₂/MWCNTs hybrid membrane: (a) TGA and (b) DSC profiles.

Figure S8 Contact angle evolution of MnO₂/MWCNTs membranes in aqueous electrolyte solution.

Figure S9 CV profile at 0.6 mV/s showing the capacitive contribution (red region) to the total current.

Figure S10 The logarithm dependence of peak current density and scan rate of the $MnO_2/MWCNTs$ membrane -based ZIB in the *CV* test. In order to further explore the electrochemical kinetic of $MnO_2/MWCNTs$ electrode, the logarithm dependence of peak current density *i* and various scan rates *v* in the *CV* test has been analyzed based on the following equation:⁷

$$i = a v^{b}$$

$$log i = log a + b log v$$
(1)
(2)

Where parameters *a* and *b* are adjustable parameters, with *b* (range from 0.5 to 1.0) represents the slope of *log i* versus *log v* in Supplementary Fig. S8. It's obviously that the *b* value of 0.5 represents a diffusion-controlled insertion process, while the *b* value of 1.0 reflects a surface capacitive process.^{8,9} With the linear plots of *log i* and *log v*, the *b* values of four redox peaks are calculated as 0.66 (peak 1), 0.57 (peak 2), 0.54 (peak 3), and 0.51 (peak 4), respectively. It indicates that the electrochemical kinetic of MnO₂/MWCNTs electrode is affected by diffusion-controlled process and capacitive effects, while the former plays the dominant role.

Figure S11 The galvanostatic charge/discharge curves of the $MnO_2/MWCNTs$ membrane-based ZIBs at various current densities of 0.1, 0.2, 0.4, 0.6 and 0.8 A·g⁻¹, respectively.

Figure S12 (a) XRD and (b) SEM of the δ -MnO₂ bulk prepared by the thermal decomposition of KMnO₄.

Figure S13 (a) Nyquist spectrum of MnO₂ bulk electrodes measured at the corresponding point on the discharge curve (inset) for Zn^{2+} diffusion coefficient analysis. (b) Z' vs. $\omega^{-1/2}$ plots in the low frequency region obtained from the electrochemical impedance spectroscopy measurements.

Figure S14 Galvanostatic charge/discharge curves of the $MnO_2/MWCNTs$ membrane-based ZIB at the cycle number of 1^{st} , 10^{th} , 100^{th} , 300^{th} , and 600^{th} , respectively.

Figure S15 XRD of the pristine Zn foil anode and the Zn foil after 600 cycles disassembled from the ZIBs constructed from δ -MnO₂ bulk and the MnO₂/MWCNTs membrane, respectively.

Figure S16 Cycle performance of the flexible ZIBs at 0.5 A/g.

Cathode material	electrolyte	Specific capacity (mAh g ⁻¹)	cycle number (rete A/g)	Rete properties
$\delta^{-}MnO_{2}^{[10]}$	acetonitrile-Zn(TFSI) ₂	123 (0.04 C)	125 (0.04C)	0.04-1 C
δ -MnO ₂ ^[11]	1 M ZnSO ₄	252 (0.083 A/g)	100 (0.083 A/g)	0.083-1.67 A/g
$ZnMn_2O_4^{\left[12 \right]}$	3 M Zn(CF ₃ SO ₃) ₂	150 (0.5 A/g)	500	—
MnO ₂ @ZHS ^[13]	2 M ZnSO ₄ + 0.24 M MnSO ₄	155.4 (0.5 A/g)	1500 (0.5 A/g)	_
ε-MnO ₂ ^[14]	1 M ZnSO ₄ + 1 M MnSO ₄	221 (0.1 A/g)	500 (0.5 A/g)	0.1-2 A/g
MnO ₂ /CNT/PANI composites ^[15]	2 M ZnSO ₄ + 0.5 M MnSO ₄	310 (0.1 A/g)	340 (0.5 A /g)	0.1-5 A/g
$MnO_2/rGO^{[7]}$	2 M ZnSO ₄ + 0.1 M MnSO ₄	332.2 (0.3 A/g)	500 (6A/g)	0.3-6 A/g
β -MnO ₂ nanorods ^[16]	3 M Zn(CF ₃ SO ₃) ₂ + 0.1 M Mn(CF ₃ SO ₃) ₂	225 (0.65 C)	2000 (6.5 C)	0.65-6.5 C
Our work	2 M ZnSO ₄ + 0.2 M MnSO ₄	278.5 (0.1 A/g)	600 (0.1 A/g)	0.1-2 A/g
MnOOH&MnO ₂ complex ^[17]	1 M ZnSO ₄ + 0.1 M MnSO ₄	248 (0.1 A/g)	2000 (4A/g)	0.1-4 A/g
$K_{0.8}Mn_8O_{16}$ nanoparticles ^[18]	2 M ZnSO ₄ + 0.1 mMnSO ₄	300 (0.1 A/g)	1000 (1 A/g)	0.1-2 A/g
Porous MnO _x @N-C ^[19]	2 M ZnSO ₄ + 0.1 M MnSO ₄	305 (0.5 A/g)	1600 (2 A/g)	0.1-2 A/g
PANI-intercalated MnO ₂ ^[20]	2 M ZnSO ₄ + 0.1 M MnSO ₄	280 (0.2 A/g)	5000 (2 A /g)	0.2-3 A/g
$MnO_2^{[21]}$	2 M ZnSO ₄ + 0.2 M MnSO ₄	290 (0.3 C)	10000 (6.5C)	0.3-6.5 C

Table S1. Comparison of specific capacity, cycle number and rate properties

References

- N. Dwivedi, R. J. Yeo, N. Satyanarayana, S. Kundu, S. Tripathy, C. S. Bhatia, Sci. Rep. 2015, 5, 7772.
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao,
 J. Liang, X. Sun, J. Qiu, *Adv. Energy Mater.* 2017, 7, 1602880.
- 3 A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, *Adv. Mater.* 2013, 25, 2809.
- 4 P. Lv, Y. Y. Feng, Y. Li, W. Feng, J. Power Sources 2012, 220, 160.
- 5 W. Xiao, D. Hu, C. Peng, G. Z. Chen, ACS Appl. Mater. Inter. 2011, 3, 3120.
- Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, ACS Nano 2010,
 4, 5835.
- H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 1997, 101, 7717.
- 8 J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 9 Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang, Y. Hu, D. Wang, L. Zuin, T. Zhou, Y. Wu, S. Sun, *Adv. Energy Mater.* 2018, 8, 1801445.
- 10 S.-D. Han, S. Kim, D. Li, V. Petkov, H. D. Yoo, P. J. Phillips, H. Wang, J. J. Kim, K. L. More, B. Key, R. F. Klie, J. Cabana, V. R. Stamenkovic, T. T. Fister, N. M. Markovic, A. K. Burrell, S. Tepavcevic and J. T. Vaughey, *Chem. Mater.* 2017, **29**, 4874.
- 11 M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew and J. Kim, *Electrochem. Commun.* 2015, **60**, 121.
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, J. Am. Chem. Soc. 2016, 138, 12894.
- 13 S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao, L. Chen, D. G. Ivey, Y. Deng and W. Wei, *J. Mater. Chem. A* 2018, 6, 5733.
- 14 L. Wang, X. Cao, L. Xu, J. Chen and J. Zheng, ACS Sustainable Chem. Eng.
 2018, 6, 16055.
- 15 L. Zhao, L. Dong, W. Liu, C. Xu, *ChemistrySelect* **2018**, *3*, 12661.
- Y. Huang, J. Liu, Q. Huang, Z. Zheng, P. Hiralal, F. Zheng, D. Ozgit, S. Su, S.
 Chen, P.-H. Tan, S. Zhang and H. Zhou, *NPJ Flex. Electron.* 2018, 2, 21.

- 17 N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li and J. Chen, *Nat. Commun.* 2017, 8, 405.
- 18 N. Qiu, H. Chen, Z. Yang, S. Sun and Y. Wang, *RSC Adv.* 2018, **8**, 15703.
- 19 G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan and S. Liang, *Adv. Funct. Mater.* 2019, **29**, 1808375.
- 20 J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang and Y. Xia, *Nat. Commun.* 2018, **9**, 2906.
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M.
 Zhu and C. Wang, J. Am. Chem. Soc. 2017, 139, 9775.