SUPPORTING INFORMATION

Synthesis of Microporous Silica Nanoparticles to Study Water Phase Transitions by Vibrational Spectroscopy

Daniel J. Rosenberg^a, Selim Alayoglu^a, Robert Kostecki^{a,b}, and Musahid Ahmed^a

^aChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA

^bEnergy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA

List of Methods and Figures:

Materials

- Figure S1: Synthetic overview to produce individually silica nanoparticle species
- Figure S2: Diagram of transmission FTIR vapor cell setup
- Figure S3: Spectral series for Zn@G4-OH@SiO2 show data processing steps
- Figure S4: TEM images used for statistical analysis
- Figure S5: SEM images showing typical packing and film thickness
- Figure S6: Variation in FTIR spectrum due to changes in film thickness
- Figure S7: Representative FTIR spectral series and peak fittings
- Figure S8: Wavenumber assignments for dry silica nanoparticles and hydration
- Figure S9: Batch comparison of Zn@G₄-OH@SiO₂ at maximum hydration

Materials: Polyoxyethylene (5) nonylphenylether (IGEPAL CO-520), cyclohexane (HPLC, >99.7%), anhydrous ethanol (>99.5%), methanol (HPLC, >99.9%), 1-hexanol (98%), Zinc sulfate heptahydrate (ZnSO₄ · 7H₂O, >99.9%), Copper(II) sulfate pentahydrate (CuSO₄ · 5H₂O, >99.9%), tetraethylorthosilane (TEOS, >99.9%), Ammonia Hydroxide (NH₄OH, 5M), Hydrochloric Acid (37%) were purchased from Sigma-Aldrich, hydroxyl-terminated polyamidoamine dendrimer G_x-OH PAMAM (x=4-7) in water were purchased from Dendritech. Ultrapure deionized (D.I.) water was generated using a Millipore Milli-Q plus system. All reagents were used as received without further purification.

Sample ID	Overall Diameter (OD) (nm)	Mesopore Diameter (MD) (nm)	Ratio (OD/MD)	Dendrimer Generation	Dendrimer Molarity (mM)	Metal Molarity (mM)	TEOS Amount (mL)
Zn@G4-OH@SiO2 (ethanol/water)	47.9 ± 3.5	15.0 ± 2.2	3.1	4	1.342	21.5	248
Zn@G4-OH@SiO2 (methanol/water)	44.6 ± 4.5	14.2 ± 3.6	3.2	4	1.342	21.5	248
Zn@G4-OH@SiO2 (hexanol/water)	22.0 ± 2.5	4.0 ± 0.9	5.6	4	1.342	21.5	248
Zn@G4-OH@SiO2 (water)	30.9 ± 2.4	4.7 ± 1.2	6.6	4	1.342	21.5	248
Zn@G5-OH@SiO2	30.2 ± 2.4	2.7 ± 0.6	11.2	5	1.342	43.0	248
Zn@G ₆ -OH@SiO ₂	29.5 ± 2.3	2.3 ± 0.5	13	6	0.776	49.7	319
Zn@G7-OH@SiO2	28.2 ± 2.0	<1.5	>20	7	0.557	71.3	237

All Solutions Contain:				
IGEPAL CO-520	10mL			
Cyclohexane	170mL			
NH ₃ OH	0.8mL			
Total Volume	~185mL			

Figure S1: Synthetic overview to produce individually silica nanoparticle species.

FTIR- Vapor Cell System

Figure S2: Diagram of transmission FTIR vapor cell setup used to analyze synthesized silica nanoparticles.

Figure S3: Spectral series for $Zn@G_4-OH@SiO_2$ show data processing steps with (A) raw spectra, (B) baseline normalized, (C) atmospheric water vapor subtracted, (D) normalized to the 3250cm⁻¹ peak, (E) hydration series of blank Ge under the same vapor conditions, and (F) final fitted spectra of $Zn@G_4-OH@SiO_2$ at maximum hydration at 309K.

Figure S4: TEM images used for statistical analysis of overall particle and internal mesopore sizes for (A) Zn@G4-OH@SiO₂ (water), (B) Zn@G7-OH@SiO₂, (C) Zn@G4-OH@SiO₂ (ethanol/water), and (D) Zn@G4-OH@SiO₂ (hexanol/water).

Figure S5: SEM images showing typical packing and film thickness using the example of Zn@G4-OH@SiO2.

Figure S6: Figure shows the lack of variation in FTIR spectrum due to changes in film thickness (red thinnest ~10 μ m to green thickest ~30 μ m). Top four spectrum are raw and bottom four normalized to 3250 cm⁻¹ peak.

Figure S7: Representative FTIR spectral series and peak fittings with residuals showing variation between measured spectrum and their fits for all individual silica nanoparticle species.

Wavenumber (cm ⁻¹)	Peak Assignment		
3735	v(SiO-H) Isolated Silanol		
3624	H-bonded v(SiO-H) Vicinal Silanol		
3459	vas(H2O) Asymmetric Stretch (Bulk Confined Water)		
3241	v _s (H ₂ O) Symmetric Stretch (Ice-like Surface Water)		
3018	Bulk Interfacial/Interparticle water		
2127	δ(H ₂ O) Bend + Libration		
1643	C=O stretch (amide I)		
1635	δ(H2O) Bend		
1543	C-N stretching/C-N-H bending (amide II)		
1294, 1065	C-N stretch (tert-amine)		
1214	vas(Si-O)LO Surficial Siloxane		
1096	vas(Si-O-Si)TO Surficial Siloxane		
1049	vas(Si-O)		
958	vs(Si-OH) Vicinal Silanol		
879, 798	vs(Si-O-Si) Surficial Siloxane		

Figure S8: Wavenumber assignments for dry silica nanoparticles and silica hydration.

Figure S9: Batch comparison of Zn@G4-OH@SiO2 at maximum hydration of ~50% relative humidity and at 309K, showing consistency in measurements between batches.