Supporting Information - Luminescence Dynamics and Enhancement of the UV and Visible Emissions of Tm³⁺ in LiYF₄: Yb³⁺, Tm³⁺ Upconverting Nanoparticles

Steven L. Maurizio, Gabriella Tessitore, Gabrielle A. Mandl, John A. Capobianco* Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University 7141 Sherbrooke St. W. Montreal, Quebec, Canada, H4B 1R6

Ion	Nominal Tm ³⁺ Concentration			
	0.1% Tm ³⁺	0.2% Tm ³⁺	0.4% Tm ³⁺	0.5% Tm ³⁺
Y ³⁺	71.12 ± 3.55%	72.15 ± 3.60%	71.68 ± 3.58%	73.80 ± 3.72%
Tm ³⁺	0.08 ± 0.00%	0.24 ± 0.01%	0.46 ± 0.02%	0.55 ± 0.03%
Yb ³⁺	28.80 ± 1.44%	27.61 ± 1.38%	27.86 ± 1.40%	25.65 ± 1.44%

Table S1 Inductively coupled plasma – mass spectrometry (ICP-MS) measured ionic concentration of Y^{3+} , Tm^{3+} and Yb^{3+} in UCNP compositions studied.

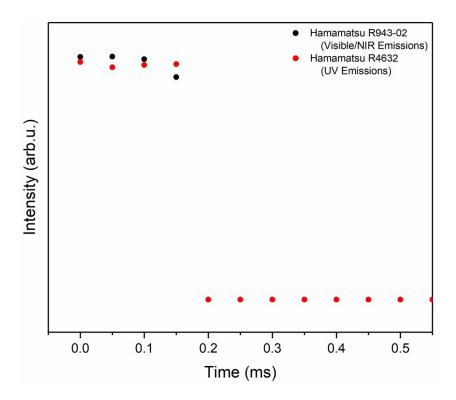
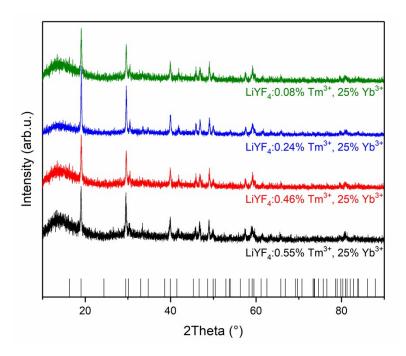
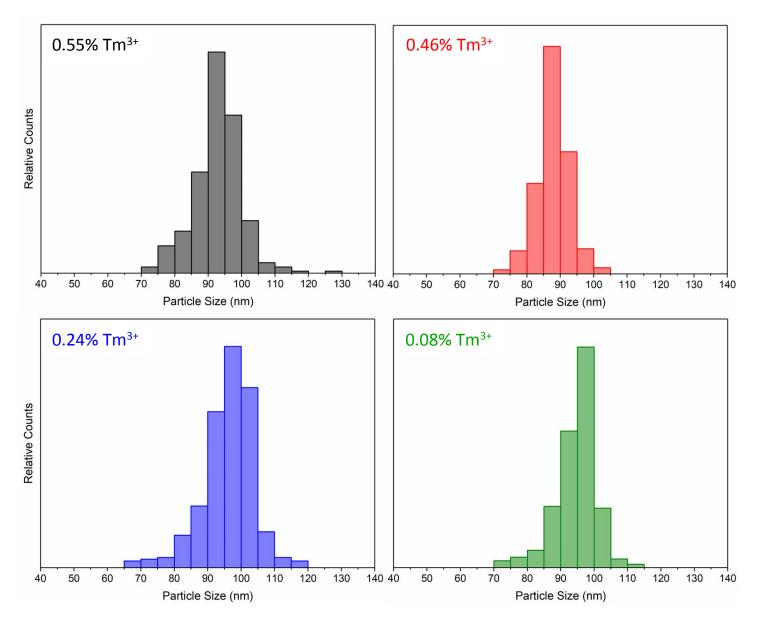




Fig. S1 Instrument response functions of the PMTs used in this work for 976 nm excitation with a 200 μ s pulse width.

Fig. S2 Powder X-ray diffraction (PXRD) patterns for different UCNP compositions studied, compared to the theoretical pattern for the tetragonal phase with space group $I4_{1}/a$.^{S1}

Fig. S3 Particle size distributions for the compositions studied in this work, measured from 300 nanoparticles.

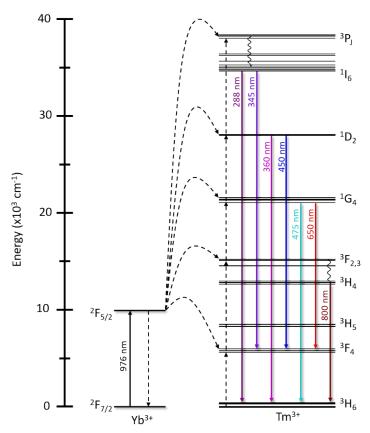


Fig. S4 Energy level diagram depicting energy transfer upconversion between Yb³⁺ and Tm³⁺.^{S2}

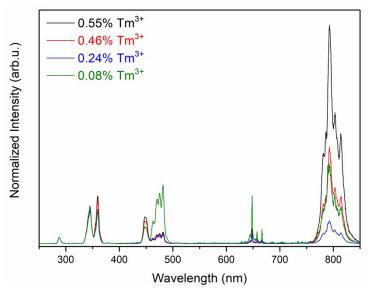
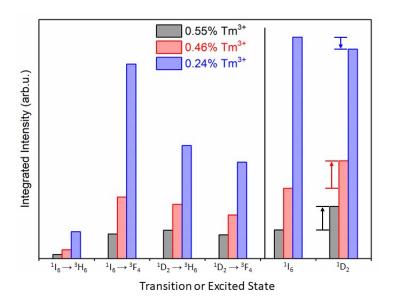
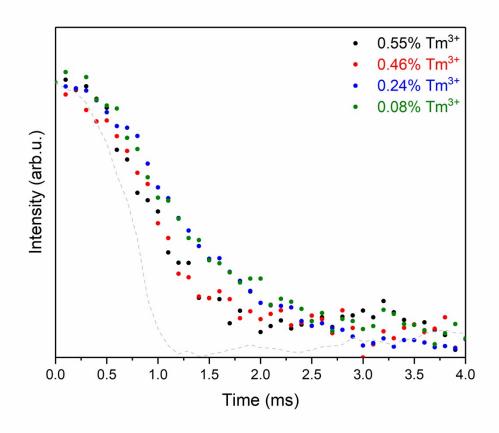


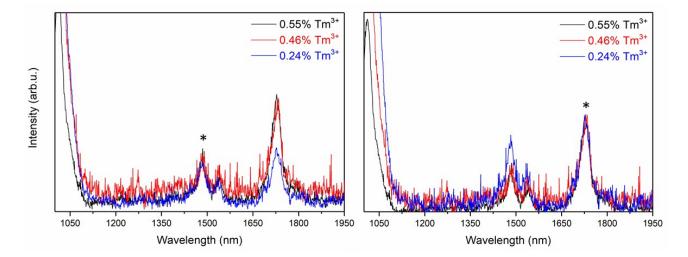
Fig. S5 Emission spectra for LiYF₄: 25% Yb³⁺, x% Tm³⁺ after 976 nm excitation, normalized to the

¹I₆ transitions.

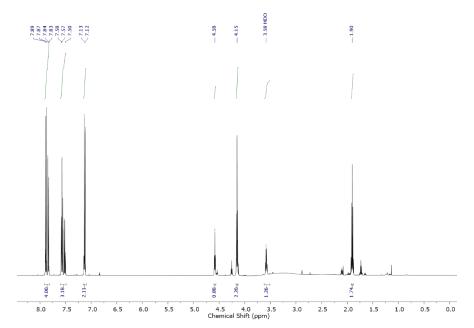



Fig. S6 Integrated emission intensities for each ${}^{1}I_{6}$ and ${}^{1}D_{2}$ transition, as well as the sum for each excited

state.


Rise and Decay times were calculated using Equations S1 and S2, respectively.^{53,54}

$$\tau_r = \frac{1}{I_{max}} \int_0^{I_{max}} f(t) dt$$
(S1)


$$\tau_d = \frac{1}{I_{max}} \int_{max}^{\infty} f(t) dt$$
(S2)

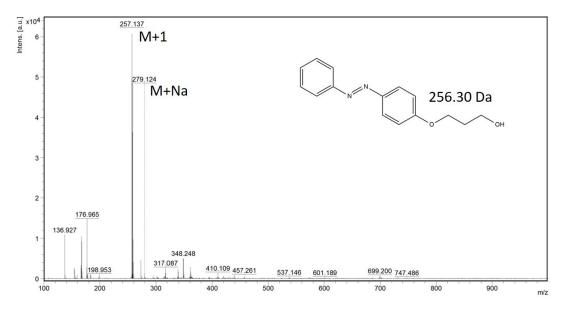

Fig. S7 Luminescence decay curves for LiYF₄: 25% Yb³⁺, x% Tm³⁺ UCNPs for the Yb³⁺ ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition (1030 nm) after a pulse of 976 nm excitation. The instrument response curve is reported as a dashed gray line for reference.

Fig. S8 NIR emission spectrum for LiYF₄: 25% Yb³⁺, x% Tm³⁺ UCNPs after 976 nm excitation, normalized to the (A) ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ and (B) ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ emissions of Tm³⁺, indicated by the asterisks.

Fig. S9 ¹H-NMR spectrum for -3-(4-phenylazophenoxy)propanol. Resulting shifts interpreted as followed: 1.90 ppm (m, 2H), 3.58 ppm (m, 1H), 4.15 ppm (m, 2H), 4.58 ppm (m, 1H), 7.12 (m, 2H), 7.57 (m, 3H), 7.85 ppm (m, 4H).^{S5}

Fig. S10 Mass spectrometry results for *trans*-3-(4-phenylazophenoxy)propanol. Resulting peaks interpreted as followed: M+1 (257.137 m/z), M+Na (279.124 m/z).⁵⁵

References

- S1. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé and A. M. Tkachuk, *Phys. Rev. B*, 2000, **61**, 5280–5292.
- S2. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J. A. Capobianco, *Adv. Mater.*, 2009, **21**, 4025–4028.
- S3. J. N. Demas, Excited State Lifetime Measurements, Academic Press, Inc., New York, 1983.
- S4. S. P. Chan, Z. J. Fuller, J. N. Demas and B. A. DeGraff, Anal. Chem., 2001, 73, 4486–4490.
- S5. G. A. Mandl, P. A. Rojas-Gutierrez and J. A. Capobianco, Chem. Commun., 2018, 54, 5847–5850.