Supporting Information

γ-Alumina-Supported Pt₁₇ Cluster: Controlled Loading, Geometrical Structure, and Size-Specific Catalytic Activity for Carbon Monoxide and Propylene Oxidation

Yuichi Negishi^{a,b,*}, Nobuyuki Shimizu,^a Kanako Funai,^a Ryo Kaneko,^a Kosuke Wakamatsu,^a Atsuya Harasawa,^a Sakiat Hossain,^a Manfred E. Schuster,^c Dogan Ozkaya,^c Wataru Kurashige,^d Tokuhisa Kawawaki,^{a,b} Seiji Yamazoe^{e,*} and Shuhei Nagaoka^{d,*}

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan

^bPhotocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278–8510, Japan

^cJohnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, UK

^dJohnson Matthey Japan, G.K., 5123–3, Kitsuregawa, Sakura, Tochigi 329–1492, Japan

^eDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachiojishi, Tokyo 192–0397, Japan.

Corresponding Author E-mail: negishi@rs.kagu.tus.ac.jp (Y. Negishi), yamazoe@tmu.ac.jp (S. Yamazoe), Shuhei.Nagaoka@mattheyasia.com (S. Nagaoka),

1. Additional Tables

Table S1. Curve Fitting Analysis of Pt L₃-edge EXAFS Data for [Pt₁₇(CO)₁₂(PPh₃)₈]Cl_n

Bond	C.N. <i>a,b</i>	$R(Å)^a$	D.W. <i>a</i> , <i>c</i>	R factor (%) a
Pt-C	1.6(4)	2.02(6)	0.008(7)	
Pt–P	0.5(2)	2.44(7)	0.004(3)	11.9
Pt-Pt	6.9(6)	2.63(6)	0.020(10)	

The numbers in parentheses are uncertainties; 1.6(4) and 2.02(6) represent 1.6 ± 0.4 and 2.02 ± 0.06 , respectively.

^{*a*} These values were obtained by fitting with Pt–C, Pt–P, or Pt–Pt bonds.

^b Coordination number

^{*c*} Debye–Waller factor.

Table S2. Curve Fitting Analysis of Pt L3-edge EXAFS Data for Pt17(CO)12(PPh3)8/7-Al2O3

Bond	C.N. <i>a,b</i>	$R(A)^{a}$	D.W. <i>a</i> , <i>c</i>	R factor (%) a
Pt-C	1.5(2)	2.01(4)	0.003(2)	
Pt–P	0.4(2)	2.24(6)	0.004(3)	15.0
Pt-Pt	5.0(4)	2.59(4)	0.013(6)	

The numbers in parentheses are uncertainties; 1.5(2) and 2.01(4) represent 1.5 ± 0.2 and 2.01 ± 0.04 , respectively. ^{*a*} These values were obtained by fitting with Pt–C, Pt–P, or Pt–Pt bonds.

^b Coordination number

^c Debye–Waller factor.

Bond	C.N. <i>a,b</i>	$R(Å)^a$	D.W. <i>a</i> , <i>c</i>	R factor (%) a
Pt-C	3.5(3)	2.03(4)	0.006(4)	10.0
Pt-Pt	6.6(3)	2.76(3)	0.009(4)	10.0

Table S3. Curve Fitting Analysis of Pt L₃-edge EXAFS Data for Pt_{17}/γ -Al₂O₃

The numbers in parentheses are uncertainties; 3.5(3) and 2.03(4) represent 3.5 ± 0.3 and 2.03 ± 0.04 , respectively. ^{*a*} These values were obtained by fitting with Pt–C or Pt–Pt bonds.

^b Coordination number

^{*c*} Debye–Waller factor.

Table S4. Gases Used in Oxidation Reaction of CO and C₃H₆

Reaction	CO/C ₃ H ₆	O_2	N_2	
CO oxidation	1%	0.5%	98.5%	
C ₃ H ₆ oxidation	200 ppm	0.5%	~99.5%	

Table S5. Gases Used in Aging Treatment

Atmosphere	H ₂	СО	O ₂	H ₂ O	N_2
Oxidation	0%	0%	3%	10%	87%
Reduction	3%	3%	0%	10%	84%

2. Additional Schemes

Scheme S1. (a) Synthesis procedure for $[Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n$ (n = 1, 2) and (b) photograph of product at each stage (i)–(vi) described in (a).¹

Scheme S2. Preparation procedure for honeycomb catalysts.

3. Additional Figures

Figure S1. Positive-ion MALDI mass spectra: (a) wide-region spectrum and (b) spectrum expanded for the main peaks. These mass spectra include the laser fragments assigned in (b). In (a), peaks other than the fragment peaks of $[Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n$ are hardly observed, indicating that the product contains high-purity $[Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n$.

Figure S2. (a)-(f) Representative HAADF-STEM images of [Pt₁₇(CO)₁₂(PPh₃)₈]Cl_n.

Figure S3. (a)-(f) Representative HAADF-STEM images of Pt₁₇(CO)₁₂(PPh₃)₈/γ-Al₂O₃.

Figure S4. (a) TGA curve obtained for $Pt_{17}(CO)_{12}(PPh_3)_8/\gamma$ -Al₂O₃ and (b) the gasses desorbed from the sample above 400 °C. These curves were obtained using an STA 2500 Regulus (NETZSCH) and a JMS-Q 1500GC (JEOL) at a heating rate of 5 °C/min under Ar atmosphere over the temperature range 25–900 °C. In (b), CO₂ is considered to be the product of the oxidation of the CO ligand catalyzed by Pt₁₇ because this measurement was conducted under Ar atmosphere.² These results imply that some of the CO remains on the supported Pt₁₇ even after the calcination at 500 °C.

Figure S5. P 2p XPS spectra of (a) $[Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n$ and (b) Pt_{17}/γ -Al₂O₃.

Figure S6. (a)–(f) Representative HAADF-STEM images of Pt₁₇/γ-Al₂O₃.

Figure S7. Temperature-programmed reaction (TPR) curve monitored at m/z = 44 (CO₂) for Pt₁₇/ γ -Al₂O₃ sample after air exposure. TPR analysis was performed with a Rigaku TPD type R analyzer at a heating rate of 20 °C/min under a flow of 10% O₂ diluted in He using ~100-mg samples of the catalyst powders.

Figure S8. Monitoring of the desorbed gases from Pt_{17}/γ -Al₂O₃ at each temperature using FT-IR spectroscopy. This experiment was conducted using FT/IR-6600 spectrometer (JASCO) with KP1000 digital program controller (CHINO) under a flow of 10% O₂ diluted in He. These spectra were obtained by subtracting the room-temperature spectrum from the spectrum of each temperature (100–500 °C); thus, the peaks originating from the desorbed species appear under the base line. These spectra imply that the CO adsorbed on Pt_{17}/γ -Al₂O₃ is related to the CO₂ observed in the TPR curve (Figure S7).

Figure S9. Pt L₃-edge EXAFS spectra of $[Pt_{17}(CO)_{12}(PPh_3)_8]Cl_n$, $Pt_{17}(CO)_{12}(PPh_3)_8/\gamma$ -Al₂O₃, and Pt_{17}/γ -Al₂O₃ together with those of Pt foil and PtO₂ for comparison.

Figure S10. Pt–Pt bond lengths of $[Pt_{17}(CO)_{12}(PPh_3)_8]^+$ (blue) and $[Pt_{17}(CO)_{12}(PPh_3)_8]^{2+}$ (red) estimated from each geometrical structure reported in our previous paper¹.

Figure S12. HAADF-STEM images of (a) Pt₁₇/γ-Al₂O₃ and (b) Pt_{NP}/γ-Al₂O₃ after aging treatment.

Figure S13. HAADF-STEM images of Pt_{17}/γ -Al₂O₃ loaded with a weight of 0.7 wt% Pt. The aggregation of Pt_{17} clusters were not necessarily suppressed at this loading weight, although the size distribution is still narrow (1.40 ± 0.72 nm) compared with that of Pt_{NP} prepared using the conventional method with lower loading weight (0.15% Pt; 3.10 ± 3.14 nm). In order to achieve the higher loading weight, we need to modify the ligand of Pt_{17} clusters or increase the surface defects of γ -Al₂O₃ to suppress the aggregation on the γ -Al₂O₃ during the calcination.

4. References

- 1. L. V. Nair, S. Hossain, S. Wakayama, S. Takagi, M. Yoshioka, J. Maekawa, A. Harasawa, B. Kumar, Y. Niihori, W. Kurashige and Y. Negishi, *J. Phys. Chem. C*, 2017, **121**, 11002–11009.
- 2. D. Gavril, V. Loukopoulos and G. Karaiskakis, Chromatographia, 2004, 59, 721-728.