	Time point	Approx. size peak	Scattered light	Zeta-potential
	(h)	max (nm)	intensity (average,	(average, mV)
			kcps)	
Ag10	0 h	10, 1000	730	-0.587
	24 h	10, 100, 1000	63	N.D.
Ag75	0 h	3.5, 40, 400	2790	-7.78
	24 h	5, 100, 1000	1100	N.D.

Suppl. Table S1. Characterization of Ag nanoparticles.

Ag nanoparticles (primary particle size: 10 nm and 75 nm) were dispersed in bronchial epithelial growth medium (BEGM) and hydrodynamic size distribution and zeta potential values were determined. The data are reproduced from Gliga et al. Sci. Reports. 2018 (8):6668 [Creative Commons licence]. Suppl. Table S2. Canonical pathways enriched after long-term exposure of BEAS-2B cells to Ag nanoparticles.

Ingenuity Canonical Pathways	p-value	z-score	n	Gene symbols
Leukocyte Extravasation Signaling	0.001	0.39	28	TIMP3, FGFR2, FGFR3, CXCR4, VAV3, ITGA1, F11R, EDIL3, MAP3K4, FER, PIK3C3, PIK3R3, MAPK14, AFDN, TIMP4, ITGA5, TEC, WIPF1, CLDN15, MMP19, THY1, MMP11, ITGB2, JAM2, FGFR4, CYBA, ITGA4, MMP2
Dendritic Cell Maturation	0.002	0.20	26	FGFR2, FGFR3, HLA-DQB1, IL1A, IL1B, IL18, MYD88, PIK3C3, CREB1, PIK3R3, ATF2, MAPK14, CD83, PLCE1, PLCH1, COL1A1, HLA-DMA, PLCL2, PLCD4, LY75, CREB5, FGFR4, COL18A1, TNFRSF1B, COL1A2, DDR2
Acute Phase Response Signaling	0.002	-0.94	24	FGG, IL1A, IL1B, SAA2, FGA, IL18, SOCS2, MAP3K5, MAP3K1, IL6ST, MYD88, SOD2, SOCS5, PIK3R3, SOCS6, MAPK14, FTL, RBP7, RBP1, CRABP2, ITIH3, TNFRSF1B, MRAS, SERPINF1
Inflammasome pathway	0.002	-0.82	6	IL1B, IL18, NEK7, MYD88, NLRP1, P2RX7
Clathrin-mediated Endocytosis Signaling	0.004	NA	26	FGFR2, ITGB6, FGFR3, AP1M2, PDGFC, PIK3C3, DNM1L, PIK3R3, USP9X, ITGA5, LDLRAP1, PDGFB, CLU, DAB2, EPHB2, DNM1, APOC1, ITGB2, F2R, FGFR4, PGF, DNM3, SH3KBP1, SNAP91, ARRB1, APOD
IL-8 Signaling	0.011	0.63	24	CCND2, FGFR2, FGFR3, CDH1, ANGPT1, RND3, EGFR, PDGFC, PIK3C3, PIK3R3, MAP4K4, BCL2, KDR, GNG11, GNB3, MYL9, ITGB2, FGFR4, PGF, GNG2, MRAS, IRAK2, GNG7, MMP2
p38 MAPK Signaling	0.012	-0.54	16	IL1A, IL1B, IL18, MAP3K5, TGFBR1, CREB1, ATF2, MAPK14, FADD, RPS6KA2, TGFB1, DDIT3, MEF2C, CREB5, TNFRSF1B, IRAK2
IL-7 Signaling Pathway	0.013	0.58	13	FGFR2, FGFR3, PIK3C3, CDKN1B, PIK3R3, MAPK14, STAT5B, BCL2, FOXO6, IL7, FYN, FGFR4, EBF1
FLT3 Signaling in Hematopoietic Progenitor Cells	0.034	-0.58	12	FGFR2, FGFR3, PIK3C3, CREB1, PIK3R3, ATF2, MAPK14, STAT5B, RPS6KA2, CREB5, FGFR4, MRAS
IL-9 Signaling	0.039	-0.82	7	FGFR2, FGFR3, SOCS2, PIK3C3, PIK3R3, STAT5B, FGFR4
Th2 Pathway	0.041	-1.39	17	FGFR2, FGFR3, CXCR4, HLA-DQB1, JAG2, TGFBR1, PIK3C3, PIK3R3, STAT5B, ACVR2A, TGFB1, HLA-DMA, ITGB2, S1PR1, FGFR4, HLA-DPB1, NOTCH3
Role of IL-17F in Allergic Inflammatory Airway Diseases	0.044	0.00	7	IL1B, CREB1, ATF2, IL17RA, RPS6KA2, CREB5, CXCL6
Macropinocytosis Signaling	0.047	-0.38	11	FGFR2, ITGB6, FGFR3, PDGFC, PIK3C3, PIK3R3, ITGA5, PDGFB, ITGB2, FGFR4, MRAS
NF-ĸB Signaling	0.048	-1.34	20	FGFR2, FGFR3, IL1A, IL1B, IL18, EGFR, MAP3K1, MYD88, AZI2, TGFBR1, PIK3C3, PIK3R3, MAP4K4, FADD, KDR, TNFRSF11A, FGFR4, TNFRSF1B, MRAS, GHR
Phagosome Formation	0.049	NA	15	FGFR2, FGFR3, RND3, PIK3C3, PIK3R3, ITGA5, PLCE1, PLA2R1, PLCH1, PLCL2, ITGB2, MRC2, PLCD4, FGFR4, ITGA4

Pathway analysis was performed using Ingenuity Pathway Analysis software on the differentially expressed genes following repeated exposure of BEAS-2B cells to 1 μ g/mL Ag nanoparticles (10 nm) for 6 weeks. Significantly enriched canonical pathways (p-value<0.05) filtered for relevance for immune function (i.e., cytokine signaling and cellular immune response categories) are illustrated. Some pathways are additionally characterized by z-score, a measure of the activation state of the pathway. NA, activity pattern not available. Color coding indicates direction of gene expression change: red - upregulation, blue - downregulation as compared to untreated cells.

Suppl. Table S3. Gene ontologies enriched after long-term exposure of BEAS-2B cells to Ag nanoparticles.

Biological process	p-value	Level	n	Gene symbols
TRIF-dependent toll-like receptor signaling pathway		13	10	MAPK14,DUSP4, BIRC3, CREB1, PPP2R5D, ATF2, FAD, IRAK2, MEF2C, RPS6KA2
toll-like receptor 4 signaling pathway	<0.001	12	16	S100A14,MYD88, MAP3K1, MAPK14, DUSP4, BIRC3,CREB1, PPP2R5D, ATF2, FADD, PELI2, IRAK2, PIK3AP1, MEF2C, ITGB2, RPS6KA2
toll-like receptor 9 signaling pathway	<0.001	12	13	MYD88, MAP3K1, MAPK14,PIK3C3, DUSP4, CREB1,PPP2R5D,ATF2 PELI2, IRAK2, PIK3AP1, MEF2C, RPS6KA2
toll-like receptor 2 signaling pathway	<0.001	12	12	MYD88, MAP3K1,MAPK14, DUSP4, CREB1, PPP2R5D, PELI2, IRAK2, PIK3AP1, MEF2C, RPS6KA2
toll-like receptor 10 signaling pathway	<0.001	12	11	MYD88, MAP3K1, MAPK14,DUSP4, CREB1, PPP2R5D, ATF2 PELI2, IRAK2, MEF2C, RPS6KA2
toll-like receptor 5 signaling pathway	<0.001	12	11	MYD88, MAP3K1, MAPK14,DUSP4, CREB1, PPP2R5D, ATF2 PELI2, IRAK2, MEF2C, RPS6KA2
toll-like receptor TLR1:TLR2 signaling pathway	<0.001	12	11	MYD88, MAP3K1, MAPK14, DUSP4, CREB1, PPP2R5D, ATF2 PELI2, IRAK2, MEF2C, RPS6KA2
toll-like receptor TLR6:TLR2 signaling pathway	<0.001	12	11	MYD88, MAP3K1, MAPK14, DUSP4, CREB1, PPP2R5D, ATF2 PELI2, IRAK2, MEF2C, RPS6KA2
toll-like receptor 3 signaling pathway	0.002	12	10	MAPK14, DUSP4, BIRC3, CREB1, PPP2R5D, ATF2, FADD, IRAK2, MEF2C, RPS6KA2
positive regulation of GTPase activity	0.003	12	19	EPHA1, SFRP1, RASAL2, RGS7, VAV3, SIPA1L1, ARHGEF5, ARHGAP26, EZH2, RALGAPB RGS2, ARRB1, RGS3, CHN2 , AXIN2, SEMA4D, THY1, S1PR1, LRRK2
MyD88-dependent toll-like receptor signaling pathway	0.003	12	11	MYD88, MAP3K1, MAPK14, DUSP4, CREB1, PPP2R5D, ATF2 PELI2, IRAK2, MEF2C, RPS6KA2,
activation of MAPKK activity	0.007	12	8	EGFR, MAP3K5, MAP3K4, MAP3K1, TGFBR1 F2R, TNIK, LRRK2,
positive regulation of protein serine/threonine kinase activity	<0.001	11	29	CCND2, EGFR, CXCR4, MAP3K5, ITGA1, CHI3L1, MAP3K4, IL1B, MAPK14, EZH2, HSP90AB1, PDCD10, THBS1, FPR1, SIRT1 SNCA, ZEB2,DAB2, GHR, IRAK2, RGCC, CSPG4, P2RX7, PLCE1, TNFRSF11A, TGFB1, PDGFB, LRRK2, HSPA2
regulation of MAP kinase activity	<0.001	11	30	CAV1, EGFR, SFRP1, CXCR4, MAP3K5, ITGA1, MAP3K4, IL1B, MAPK14, EZH2, DUSP9, DUSP4, PDCD10, THBS1, FPR1 RGS2, ZEB2, UCHL1, RGS3, DAB2, GHR, IRAK2, CSPG4, P2RX7, PLCE1, TNFRSF11A, TGFB1, PDGFB, LRRK2,SPRY1
regulation of ventricular cardiac muscle cell action pot- ential	<0.001	11	5	DSP SCN5A, ANK2, DSC2, SCN3B

Gene ontology analysis was performed using GOEast online tool on the differentially expressed genes following repeated exposure of BEAS-2B cells to 1 μ g/mL Ag nanoparticles (10 nm) over 6 weeks. Top 15 enriched ontologies part of the biological process domain ordered according to the hierarchical level are illustrated. Color coding indicates direction of gene expression change: red - upregulation, blue - downregulation as compared to untreated cells. Level stands for hierarchical level in the gene ontology tree; the ontologies that are furthest down in the ontology tree have higher levels and increased specificity.