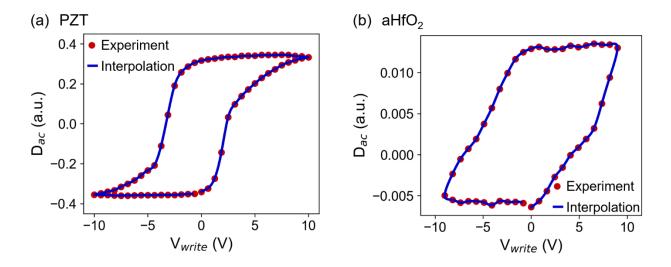
SUPPLEMENTARY INFORMATION

To Switch or Not to Switch – a Machine Learning Approach for Ferroelectricity

Sabine M. Neumayer¹, Stephen Jesse¹, Gabriel Velarde², Andrei L. Kholkin³, Ivan Kravchenko¹,


Lane W. Martin², Nina Balke¹, Peter Maksymovych^{1*}

- ¹ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- ² Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA & Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ³ Department of Physics & CICECO Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal & School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

*maksymovychp@ornl.gov

Section I

Experimental cKPFM data and interpolation extracted from cKPFM maps shown in Figure 3 for (a) PZT and (b) aHfO₂ between data points. Interpolation was performed using the scikit-image transform function.⁴⁰

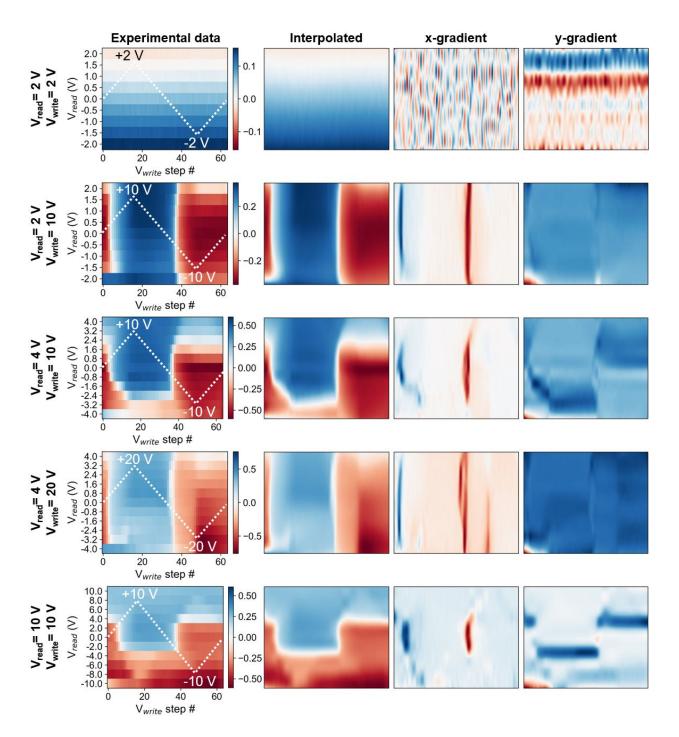
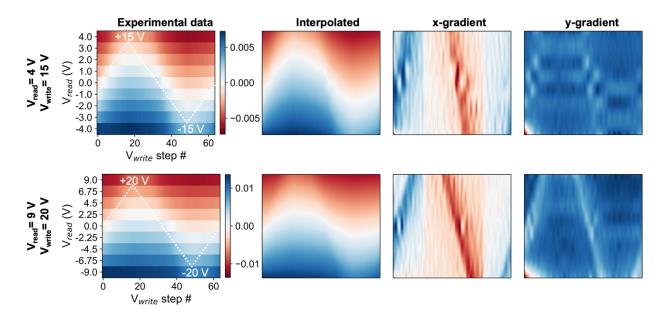


Figure S1: Experimental and interpolated response data measured (a) on PZT as a function of V_{write} and (b) on aHfO₂. Data were extracted from the cKPFM maps shown in Figure 3 at _{Vread} = 0 V.


Section II

Maps of experimental and interpolated cKPFM data and their x- and y- gradients shown for

different Vread and Vwrite amplitudes for PZT (Figure S2) and aHfO₂ (Figure S3).

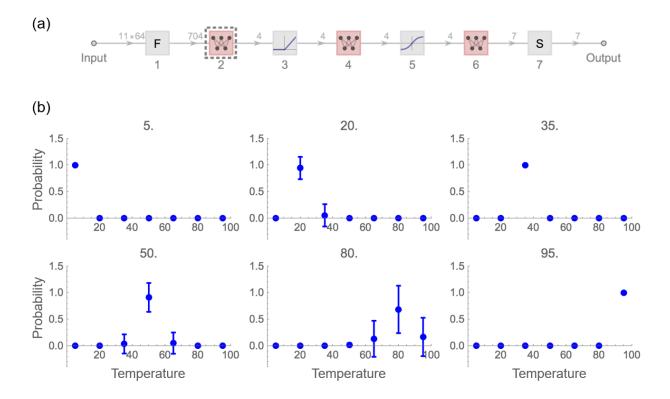

Figure S2: Maps of experimental cKPFM data acquired on PZT, interpolated data and the gradients in x- and y-direction calculated from interpolated maps. The V_{read} and V_{write} ratios vary according to the labels on the left. The first row shows response to sub-coercive read and write voltages.

Figure S3: Maps of experimental cKPFM data acquired on $aHfO_2$, interpolated data and the gradients in x- and y-direction calculated from interpolated maps. The V_{read} and V_{write} amplitudes vary according to the labels on the left.

Section III

A multilayer perceptron ANN was trained on cKPFM maps within the data set shown in Figure 5(a), where 100 maps were acquired at 7 different temperature steps on PLZT across the ferroelectric – relaxor phase transition. Subsequently, the ANN was used to identify the temperature at which test data sets were measured.

Figure S4: (a) Graph of linear multi-perceptron neural network used to predict temperatures based on the structure of the 2D response function. Layer structure of the network is as follows: (1) flattening image into a 704-dimensional vector; (2) mapping into 4 layer perceptron; (3) rectifying activation; (4) another mapping into 4 layer perceptron; (5) sigmoid activation; (6) mapping into 7 layer perceptron; (7) softmax normalization layer for normalization into class labels (each corresponding to specific temperature); (b) shows the average performance of the network to predict a specific temperature (labeled at the top) obtained by applying the network to validation data-set. (x - axis in each plot is the temperature in C; y-axis is the probability of predicted temperature)