
Electronic supplementary information 

1 
 

Electronic supplementary information 

 

Does carrier velocity saturation help to enhance fmax in graphene 
field-effect transistors?  

 

Pedro C. Feijoo1, Francisco Pasadas1, Marlene Bonmann2, Muhammad Asad2, Xinxin 

Yang2, Andrey Generalov3, Andrei Vorobiev2, Luca Banszerus4, Christoph Stampfer4, 

Martin Otto5, Daniel Neumaier5, Jan Stake2, David Jiménez1 

1 Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain 
2 Chalmers University of Technology, SE-41296 Gothenburg, Sweden 
3 Aalto University, FI-00076 Helsinki, Finland 
4 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany 
5 Advanced Microelectronic Center Aachen, AMO GmbH, 52074 Aachen, Germany 

S1. Fabrication and characterization of GFETs 

The two-finger gate GFET analyzed in this work was fabricated as described in ref. 1. 

The reported state-of-the-art RF performance is achieved by a combination of 

improvements of the GFET design and fabrication process. First, a very high-quality CVD 

graphene film, with a Hall mobility up to 7000 cm2 V-1 s-1, was transferred to a high-

resistivity Si/SiO2 substrate with an increased SiO2 thickness of 1 μm, which resulted in a 

reduction in the parasitic pad capacitances. Immediately after the transfer, the graphene 

film was covered by a 5 nm thick protective Al2O3 layer. The protective layer encapsulates 

graphene and prevents it from contamination during further processing, thereby reducing 

concentration of traps and charged scattering impurities at the graphene/dielectric 

interface. Apparently, the use of a buffered oxide etching for opening contact windows in 

the protective Al2O3 layer resulted in a more effective removal of e-beam resist and PMMA 

residues and, hence, an extremely low graphene/metal specific contact resistivity, as low 

as 90 Ω μm.  

The DC current-voltage curves and the scattering parameters S of the GFETs were 

measured using a Keithley 2612B dual-channel source meter and an Agilent N5230A 

network analyzer, respectively. The RF measurement setup was calibrated at the ground-

source-ground microwave probe tips using a CS-5 calibration substrate by the SOLT 

procedure. The output characteristics (Ids-Vds) were obtained during the S-parameter 

measurements with a holding time of 30 s at each bias point. This holding time is long 

enough for the trapping/detrapping processes to stabilize. The S-parameters were 

measured under different bias conditions in the frequency range of 1–50GHz and used to 

calculate the admittance parameters Y, the small-signal current gain (h21) and the 

unilateral power gain (U).2–4 The equations used are included in section S5. The 
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experimental values of fT,x and fmax were found as the frequencies at which the 

extrapolation of the magnitudes of |h21| and |U| equals to 0 dB.  
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S2. Self-consistent simulator including self-heating effect 

Here we explain the fundamentals of the self-consistent simulator used to calculate the 

behavior of GFETs with a structure as depicted in Fig. 1(b) of the main text. More details of 

the simulator can be found thoroughly described in ref. 5. The intrinsic bias voltages 

applied to the electrodes of top gate and drain with respect to the source (V’gs and V’ds, 

respectively) induce a sheet charge density σ(y) = q[p(y) - n(y)] + σit(y) in the graphene 

layer. The magnitudes p(y) and n(y) are the hole and electron concentrations along the 

graphene channel, q is the elementary charge, y is the axis that goes from source (y = 0) to 

drain (y = Lg), where Lg is the channel length. Here σit(y) corresponds to the interface 

trapped charge density. The sheet charge distribution is needed to calculate the 

electrostatic potential ψ(x,y) inside the GFET by means of the Poisson’s equation. Fig. S1 

shows the two-dimensional domain where this equation is solved, where x is the position 

along the axis that goes from back to top gate electrodes. Assuming that the GFET width 

Wg (in the z direction) is large as compared with the other dimensions of the device, the 

Poisson’s equation can be written as follows: 

𝛁 ∙ [𝜀r(𝑥, 𝑦)𝜀0𝛁𝜓(𝑥, 𝑦)] = 𝜌free(𝑥, 𝑦)  (S1) 

where ε0 is the vacuum dielectric constant, and εr(x,y) is the relative dielectric constant, 

which is equal to εt and εb inside the top and back dielectrics, respectively, and εG in the 

graphene. From Fig. S1, the parameters tt and tb correspond to the top and back insulator 

thicknesses, respectively. The charge density ρfree(x,y) is zero inside both dielectrics so its 

only contribution corresponds to σ(y) inside graphene. When solving the Poisson’s 

equation, the electrostatic potential on the top gate is set to V’gs – Vgs0 and the back gate to 

V’bs – Vbs0, where Vgs0 and Vbs0 are the flatband voltages. Homogeneous Neumann’s 

conditions are applied to the other two boundaries of the dielectrics to ensure charge 

neutrality.  

The drift-diffusion equation for the drain current Ids reads as follows: 

𝐼ds = 𝑞𝑊g[𝑛(𝑦) + 𝑝(𝑦)]𝜇(𝑦)
𝑑𝑉(𝑦)

𝑑𝑦
  (S2) 

where µ(y) is the field-dependent mobility, assumed to be equal for electrons and holes, 

and V(y) is the quasi-Fermi potential in the graphene. The boundary conditions make V(y) 

equal to zero at y = 0 and equal to V’ds at y = Lg. Electron and holes share the same quasi-

Fermi level due to a very short recombination time of carriers in graphene, of around 10 - 

100 ns.6,7 

In this work we have included the effect of self-heating when calculating charges and 

current at a certain DC bias. This means that the temperature of the GFET rises due to the 

heat dissipated by the current flow along the graphene channel and is not properly 
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removed from the device because of the thermal resistance of the surrounding layers. We 

thus solve self-consistently the previous two-equation system (drift-diffusion and 

Poisson’s equations) together with the solution of the equivalent thermal circuit of Fig. 

S2(a). The temperature of the graphene channel T must increase as: 

𝑇 − 𝑇0 = 𝑅th𝑃dis  (S3) 

where T0 = 300 K is the temperature of the heat sink, assumed to be the environment of 

the transistor, and Pdis is the dissipated power in the GFET. In this work, the value of 

thermal resistance Rth has been considered as a fitting parameter to reproduce the 

experimental current-voltage curves. Pdis takes the form: 

𝑃dis = |𝐼ds𝑉′ds|  (S4) 

From both the electrostatic and quasi-Fermi potentials, the carrier concentrations are 

calculated using the linear dispersion relation of graphene, and thus accounting for its 

quantum capacitance: 

𝑛(𝑦) = 𝜌0 + 𝑁Gℱ1 [𝑞
𝜓(0,𝑦)−𝑉(𝑦)

𝑘𝑇
]  (S5a) 

𝑝(𝑦) = 𝜌0 + 𝑁Gℱ1 [−𝑞
𝜓(0,𝑦)−𝑉(𝑦)

𝑘𝑇
]  (S5b) 

𝜎it(𝑦) = −𝑞2𝑁it[𝜓(0, 𝑦) − 𝑉(𝑦)]  (S5c) 

We have added the contribution of graphene puddles ρ0 to the carrier concentrations.8 

Here, k is the Boltzmann constant, T is the temperature, Nit is the density of defects, which 

is assumed to be constant, and NG is the effective density of states of graphene, given by: 

𝑁G =
2

𝜋
(

𝑘𝑇

ℏ𝑣F
)

2
  (S6) 

being ℏ the reduced Planck’s constant and vF the Fermi velocity (108 cm s-1). In equation 

(S5), F1(z) refers to the first order Fermi-Dirac integral: 

ℱ𝑖(𝑧) =
1

Γ(𝑖+1)
∫

𝑢𝑖d𝑢

1+𝑒𝑢−𝑧

∞

0
   (S7) 

The field-dependent mobility model that we have used in this work includes velocity 

saturation effects in the following form: 

𝜇(𝑦) =
𝜇LF

{1+[
𝜇LF

𝑣sat(𝑦)
|
𝜕𝜓(0,𝑦)

𝜕𝑦
|]

𝛾
}

1
𝛾

   
(S8) 

where γ is a parameter of the model describing the softness of the crossover between low-

field and high-field mobilities, and µLF refers to the low-field carrier mobility.  

Saturation velocity vsat is related to optical phonon emission energy ℏΩ, the carrier 

concentration ρsh(y) = n(y) + p(y) and T by the following equation: 

𝑣sat(𝑦) =
2Ω

𝜋√𝜋𝜌sh(𝑦)
√1 −

Ω2

4𝜋𝑣F
2𝜌sh(𝑦)

1

𝑁OP+1
  (S9) 

Phonon occupation NOP depends on temperature as: 



Electronic supplementary information 

5 
 

𝑁OP =
1

𝑒
ℏΩ
𝑘𝑇−1

  (S10) 

In summary, given the set of material properties and the dimensions of the GFET, and 

after selecting a bias point (V’gs and V’ds), the simulator solves in a self-consistent way the 

drift-diffusion transport equation (S2) coupled with the 2D Poisson’s equation (S1) 

together with self-heating equation (S3). The simulator then obtains the stationary values 

of Ids, T, n(y), p(y), ψ(x,y) and V(y) as the outputs. In this work, we have used the values 

presented in Table S1 for the material properties and dimensions of the GFET, which 

correspond to the fabricated GFET described in the main text. 

The extrinsic voltages Vgs and Vds , connected to the terminals of the GFET, are related to 

the intrinsic voltages at the active area of the device by the following equations: 

𝑉gs = 𝑉′gs + 𝑅s𝐼ds  (S11a) 

𝑉ds = 𝑉′ds + (𝑅d + 𝑅s)𝐼ds  (S11b) 

where Rs = Rd = Rc/2 are the series resistances at source and drain, which account for the 

metal-graphene contact resistance together with the access resistance due to the ungated 

graphene channel. 

 

 

Fig. S1 Cross section of the GFET along channel length and the domain where the 

Poisson’s equation is evaluated. This GFET active area corresponds to the dashed 

rectangle in Fig. 1(b) of the main text. 
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Fig. S2 (a) Thermal model assumed for the GFET. (b) GFET configured as a two-port 

network, with the input port formed by the gate-source terminals and the output port by 

the drain-source terminals. (c) Intrinsic equivalent circuit of the GFET. (d) Extrinsic 

embedding network with the parasitic series resistances, Rg, Rd, and Rs and the parasitic 

capacitances between gate and source (Cpgs) and between drain and source (Cpds). 

Table S1 Parameters of the simulated GFET. 

Parameter Value 

tt 22 nm 

tb 1 µm 

εt 7.5 

εb 3.9 

εG 3.3 

Lg 500 nm 

Wg 2×15 µm 
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S3. Definition of diffusion velocity and total velocity 

In the drift-diffusion current given by Eq. (S2), we can define the total carrier velocity, 

vtot, as the ratio between Ids and the total carrier concentration, so: 

𝑣tot(𝑦) ≡ −
𝐼ds

𝑞[𝑛(𝑦)+𝑝(𝑦)]
= −𝜇(𝑦)

d𝑉(𝑦)

d𝑦
  (S12) 

We can now separate the current into its drift and diffusion contributions. Particularly,  

the drift current can be expressed in terms of the drift velocity, vdrift, which is proportional 

to the electric field ξ(y) which, in turn, can be written in terms of the (negative) gradient of 

the electrostatic potential ψ(y): 

𝑣drift(𝑦) = 𝜇(𝑦)𝜉(𝑦) = −𝜇(𝑦)
d𝜓(0,𝑦)

d𝑦
  (S13) 

Now we can define a diffusion velocity, vdiff, related with the diffusion mechanism 

transport, as the difference between vtot and vdrift.  

𝑣diff(𝑦) = 𝑣tot(𝑦) − 𝑣drift(𝑦) = 𝜇(𝑦)
d

d𝑦
[𝜓(0, 𝑦) − 𝑉(𝑦)]  (S14) 

where ψ(0,y) – V(y) corresponds to the local chemical potential. Figure S2 presents the 

microscopic distribution along the channel of the most important parameters simulated 

with our model, that is, n(y), p(y), ψ(0,y), V(y), ψ’(0,y), V’(y), µ(y), vdrift(y), vdiff(y) and vsat(y), 

for the GFET simulated in this work and at a bias where fmax is maximum. 

Since carrier velocities vtot, vdrift and vdiff , together with vsat, are magnitudes that are 

defined locally inside the graphene, we can average their values along the channel length 

in order to study their average behavior as a function of the bias. The averaged values are 

given by the following formulas, and have been represented in Fig. 6(f) and (g) in the main 

text. 

〈𝑣drift〉 =
1

𝐿g
∫ 𝑣drift(𝑦)d𝑦

𝐿g

0
  (S15a) 

〈𝑣diff〉 =
1

𝐿g
∫ 𝑣diff(𝑦)d𝑦

𝐿g

0
  (S15b) 

〈𝑣tot〉 =
1

𝐿g
∫ 𝑣tot(𝑦)d𝑦

𝐿g

0
  (S15c) 

〈𝑣sat〉 =
1

𝐿g
∫ 𝑣sat(𝑦)d𝑦

𝐿g

0
  (S15d) 
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Fig. S3 Distribution along the channel of relevant parameters at bias point labelled as B 

in Fig. 6(a). Solid lines correspond to simulations with activated SHE (T = 571 K) and 

dashed lines to simulations with switched-off SHE (T = 300 K). (a) Electron and hole 

concentrations, (b) Dirac point and Fermi level, (c) field-dependent mobility (d) 

electric field and Fermi-level gradient, (e) saturation velocity and carrier velocity 

broken down into drift and diffusion velocities. 



Electronic supplementary information 

9 
 

S4. Transfer characteristics 

Fig. S4 shows the experimental transfer characteristic of the GFET (symbols). A fitting 

of the hole branch at low Vds (represented by solid line) has been gotten by using a 

flatband voltage Vgs0 = 2.19 V, puddle concentration ρ0 = 2.93·1011 cm-2, low-field mobility 

µLF = 1970 cm2 V-1 s-1, and contact resistance Rc = 11 Ω. The asymmetry in the experimental 

curve can be explained by the difference in mobilities of electrons and holes and/or the 

difference in contact resistances due to the formation of the p-n junction in the ungated 

regions. 

 

  

 

Fig. S4 Measured and simulated transfer curves for the GFET described in the main 

text. 
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S5. Small-signal parameters and RF performance determination 

This section explains how the small-signal matrix Y(ω) of the GFET is obtained from the 

stationary model explained in section S2. We consider here the two-port network in 

common-source configuration represented in Fig. S2(b) and we assume that the back gate 

has a negligible influence over the graphene charge given that the back gate capacitance is 

much smaller than the top gate capacitance. The charge at the gate, source and drain 

terminals (Qg, Qs and Qd, respectively) can be obtained after the evaluation of the charge 

carrier distribution q[p(y) -n(y)]. Upon application of a Ward-Dutton’s linear charge 

partition scheme as the charge control model,9 the terminal charges read as: 

𝑄d = 𝑞𝑊g ∫
𝑦

𝐿
[𝑝(𝑦) − 𝑛(𝑦)]𝑑𝑦

𝐿g

0
  (S16a) 

𝑄s = 𝑞𝑊g ∫ (1 −
𝑦

𝐿
) [𝑝(𝑦) − 𝑛(𝑦)]𝑑𝑦

𝐿g

0
  (S16b) 

𝑄g = −𝑞𝑊g ∫ [𝑝(𝑦) − 𝑛(𝑦)]𝑑𝑦
𝐿g

0
  (S16c) 

Notice that the total charge in the device is zero, so the model is charge-conserving. 

From the charge model described above, the intrinsic capacitances of the equivalent 

circuit shown in Fig. S2(c), can be determined in the following way: 

𝐶gg =
𝜕𝑄g

𝜕𝑉′gs
|
𝑉′ds

  (S17a) 

𝐶gd = −
𝜕𝑄g

𝜕𝑉′ds
|

𝑉′gs

  (S17b) 

𝐶dg = −
𝜕𝑄d

𝜕𝑉′gs
|

𝑉′ds

  (S17c) 

𝐶dd =
𝜕𝑄d

𝜕𝑉′ds
|
𝑉′gs

  (S17d) 

𝐶gs =  𝐶gg − 𝐶gd  (S17e) 

𝐶sd = 𝐶dd − 𝐶gd  (S17d) 

To complete the small-signal model, the transconductance gm and output conductance 

gsd need to be evaluated: 

𝑔m =
𝜕𝐼ds

𝜕𝑉′gs
|

𝑉′ds

  (S18a) 

𝑔sd =
𝜕𝐼ds

𝜕𝑉′ds
|

𝑉′gs

  (S18b) 

As can be deduced from the diagram depicted in Fig. S2(c), the intrinsic admittance 

matrix then takes the form: 

𝒀′(𝜔) =  [
𝑗𝜔𝐶gg −𝑗𝜔𝐶gd

𝑔m − 𝑗𝜔𝐶dg 𝑔sd + 𝑗𝜔𝐶dd
]  (S19) 

We must include the influence of the parasitic series resistances Rg, Rs and Rd (where Rg 

is the series resistance at the gate) and parasitic capacitances at the input Cpgs and output 
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Cpds of the two-port network, as can be observed in Fig. S2(d), to obtain the extrinsic 

admittance matrix Y(ω). Then, we define the series resistance matrix Zc and the parasitic 

capacitance matrix Cp as: 

𝒁𝐜 = [
𝑅g + 𝑅s 𝑅s

𝑅s 𝑅d + 𝑅s
]  (S20a) 

𝑪𝐩 = [
𝐶pgs 0

0 𝐶pds
]  (S20b) 

The extrinsic admittance matrix is calculated from the intrinsic one adding the effect of 

series resistances and parasitic capacitances as follows: 

𝒀(𝜔) = {[𝒀′(𝜔)]−1 + 𝒁𝐜}−1 + 𝑗𝜔𝑪𝐩  (S21) 

From the elements of this complex matrix Y(ω) we can extract frequency-dependent 

maximum current gain h21(ω) and unilateral power gain U(ω): 

ℎ21(𝜔) = −
𝑦21(𝜔)

𝑦11(𝜔)
  (S22) 

𝑈(𝜔) =
|𝑦21(𝜔)−𝑦12(𝜔)|2

4{Re[𝑦11(𝜔)]Re[𝑦22(𝜔)]−Re[𝑦12(𝜔)]Re[𝑦21(𝜔)]}
  (S23) 

In order to calculate the RF figures of merit, the cutoff frequncy fT,x and the maximum 

oscillation frequency fmax, we evaluate |h21(ω)| and |U(ω)| at low frequencies and then we 

extrapolate the curves so that |h21(2πfT,x)| = 1 and |U(2πfmax)| = 1. 

It is usual to measure in the laboratory the S-parameters of a two-port network, that is, 

the matrix S(ω),. Then it is convenient to add here the equations needed to transform the 

scattering parameters to the admittance parameters: 

𝑦11(𝜔) = 𝑌0
[1−𝑠11(𝜔)][1+𝑠22(𝜔)]+𝑠12(𝜔)𝑠21(𝜔)

[1+𝑠11(𝜔)][1+𝑠22(𝜔)]−𝑠12(𝜔)𝑠21(𝜔)
  (S24a) 

𝑦12(𝜔) = 𝑌0
−2 𝑠12(𝜔)

[1+𝑠11(𝜔)][1+𝑠22(𝜔)]−𝑠12(𝜔)𝑠21(𝜔)
  (S24b) 

𝑦21(𝜔) = 𝑌0
−2 𝑠21(𝜔)

[1+𝑠11(𝜔)][1+𝑠22(𝜔)]−𝑠12(𝜔)𝑠21(𝜔)
   (S24a) 

𝑦22(𝜔) = 𝑌0
[1+𝑠11(𝜔)][1−𝑠22(𝜔)]+𝑠12(𝜔)𝑠21(𝜔)

[1+𝑠11(𝜔)][1+𝑠22(𝜔)]−𝑠12(𝜔)𝑠21(𝜔)
  (S24b) 

where Y0 = (50 Ω)-1. 
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S6. Parasitic capacitances 

The experimental values of Cpgs and Cpds were extracted from the scattering parameters 

of an open structure (a device with same contact structure than the GFET but without a 

graphene layer) following a procedure described in ref. 10. Measurements are shown in 

Fig. S5. 

In this work, we have extracted Cpgs and Cpds from the fitting of the GFET model to the 

experimental measurements of the admittance parameters. Fig. S5 shows the good 

agreement between the experimental values and the fitted ones. 

  

 

Fig. S5 Parasitic capacitances measured from the open structure of the GFET and their 

values obtained from Y-parameters fitting. 
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S7. Carrier distribution in the channel at maxima of |gm| 

Figure S6(c) shows the transconductance of the GFET considered in this work as a 

fuction of the extrinsic bias voltages Vds and Vgs. The graph present labelled biases A, B, C 

and D that correspond to the biases where |gm| shows a local maximum. These biases 

roughly coincide with the maxima of fmax, as can be seen in Fig. 6(a) of the main text. It is 

interesting to study carrier distribution along the channel for these biases, so they are 

shown in Fig. S6(a), (b), (d) and (e). Biases A and B satisfy Vgs < VD, so for both biases 

carriers in graphene are holes. In contrast, biases C and D are located in the electron 

branch (Vgs > VD). For biases A and D, carriers are depleted close to the source while, for 

biases B and C, carriers are depleted close to the drain. Biases B and C present also a 

higher intrinsic voltage gain than A and D, as shown in Fig. 6(c) in the main text. 

   

 

Fig. S6 Map of the bias-dependent transconductance. The map in (c) presents four 

maxima: (a) and (b) cases of a unipolar hole-dominated channel with the pinch-off 

point near the source and drain edge, respectively; and (d) and (e) cases of an electron-

dominated channel near the drain and source edge, respectively. The labels A, B, C and 

D correspond to the bias location of the |gm| maxima. 
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S8. Effect of interface trap density 

In this section we have analyzed the effect of the interface trap density on the DC and 

RF behavior. We have simulated the GFET with the parameters given in Table 1 of the 

main text with Nit = 0, 1012 and 1013 eV-1 cm-2. Fig. S7 shows that the current-voltage curves 

simulated with Nit = 1012 eV-1 cm-2 do not differ significantly from the case without traps. 

The situation strongly changes for Nit = 1013 eV-1 cm-2, where the high amount of charged 

defects clearly makes the carrier concentration at a given bias to decrease, which reduces 

the mobile charge and, thus, the total drain current. However, the highest possible fT,x and 

fmax that can be achieved considering any of the three examined Nit are quite similar. Fig. S8 

presents the RF figures of merit as a function of the bias point, using the values of the 

parasitic elements of Table 2 in the main text. The maxima of fT,x and fmax reach 

approximately 25 and 40 GHz independently of Nit although they are located at different 

biases: as the density of defects grows, maxima move off from the Dirac voltage. It can thus 

be concluded that, in our model, Nit up to a level of 1012 eV-1 cm-2 does not influence the 

best RF performance of the GFET but it affects the bias that optimize it. 

Notice that charged traps are assumed here to not change with the rapid variations of 

the small-signal voltage.11 That is, the mean time of trapping and detrapping charges are 

larger than the period of the RF signal. In case that charged defects were affected by the 

small-signal voltage, RF performance would decrease considerably. 

 

 

Fig. S7 Influence of interface trap density on the (a) transfer and (b) output curves. 

Solid lines correspond to Nit = 0 eV-1 cm-2; dashed lines to Nit = 1012 eV-1 cm-2; and 

dotted lines to Nit = 1013 eV-1 cm-2. 
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Fig. S8 Influence of the interface trap density on RF figures of merit: (a) fT,x and (b) fmax. 

Solid lines correspond to a Nit = 0 eV-1 cm-2; dashed lines to Nit = 1012 eV-1 cm-2; and 

dotted lines to Nit = 1013 eV-1 cm-2. 
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S9. Effect of self-heating on fmax 

We have compared the largest fmax that can be achieved with and without accounting 

the self-heating phenomena.  The latter assumes that the thermal resistance is null, so  

graphene channel remains at room temperature. Fig. S9 shows the bias dependence of fmax 

in both cases, showing that self-heating severely limit RF performance of GFETs. 

Specifically, fmax over 60 GHz can be reached for the studied bias window considering that 

the device operates at room temperature. 

 

 

  

 

Fig. S9 Map of fmax as a function of the bias point for GFET including the self-heating 

effect (solid lines) and switching off such a phenomena (dashed lines). 
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