Supporting Information

Hierarchical structure N, O co-doped porous carbon/carbon nanotubes composite derived from coal for supercapacitors and CO₂ capture

Jian Hao^{*a}, Xiu Wang^a, Yanxia Wang^a, Xiaoyong Lai^a, Qingjie Guo^a, Jiupeng Zhao^b, Yu Yang^b, Yao Li^c

^{a.} State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China. Email: haojian@nxu.edu.cn.

^{b.} School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001, Harbin, China.

^{c.} Centre for Composite Material, Harbin Institute of Technology, Harbin, 150001, China.

Experimental Section

Electrochemical data calculation

The gravimetric specific capacitances (C_m) based on galvanostatic charge-discharge (GCD) for the three-electrode and two-electrode systems were calculated according to Eqs. (1) and (2), respectively:

$$C = It/m\Delta V \tag{1}$$

$$C = 2It/m \Delta V$$
 (2)

where I is the discharge current (A), t is the discharge time (s), m is the mass of the active material (g) in a single electrode, and ΔV is the discharge potential range (V).

In the two-electrode device, the energy density (E, Wh kg⁻¹) and power density (P, Wkg⁻¹) were calculated from discharge curves at various current densities according to Eqs. (3) and (4),

respectively:

$$E = C (\Delta V)^2 / 8*3.6$$
 (3)
P = 3600E/t (4)

Where ΔV is the working voltage after ohmic drop (V) and t is the discharge time (s).

Results and discussion

Fig.S1 (a) Nitrogen adsorption desorption isotherms, and (b) pore size distribution of CNTs and IL-CNTs.

Sample	C (at%)	O (at%)	N (at%)	S (at%)
РС	90.98	7.25	1.41	0.36
N, O-PC	88.00	3.61	8.07	0.32
N, O-PC-CNTs	88.71	2.97	8.03	0.29

Table S1. XPS Analysis of the Samples

	Peak area										
Sample	C 1s			N1s			Ols				
	C=C	C-N	С-О	C=O	N-6	N-5	N-Q	N-X	quinone	С=О	С-ОН
PC	41951		9036	14489					7552	8345	6087
N, O-PC	34574	9966	7656	5514	6731	7196	2137	119	1452	5617	3782
N, O-PC-CNTs	35217	22143	9767	11466	9844	10675	1263	3767	4929	5225	2619

Table S2. The fitting peak areas of C 1s, N 1s and O 1s spectra of all the samples form XPS analysis.

Fig.S2 Electrochemical performance tested by a three-electrode system in 6 mol L⁻¹ KOH, (a) CV curves of CNTs, (b) GCD curves of CNTs under different constant currents, (c) CV curves of IL-CNTs, (d) GCD curves of IL-CNTs under different constant currents, (e) Specific capacitance of as-prepared samples at different current densities, and (h) Nyquist plots of as-prepared samples.

Fig.S3 (a) GCD curves of N, O-PC-CNTs-5% under different constant currents, (b) GCD curves of N, O-PC-CNTs-20% under different constant currents, (c) Specific capacitance of N, O-PC-CNTs-5%, N, O-PC-CNTs-10% and N, O-PC-CNTs-20% at different current densities.

Fig.S4 CO₂ adsorption isotherms for CNTs and IL-CNTs at 298 K.

Table S3 Comparision of the supercapacitors performance in three-electrode cell of porous

	• • • • •					
Samples	Synthetic method	$S_{\rm BET}$	Specific	Current	Electrolyte	Ref.
	(activation agent)	$(m^2 g^{-1})$	capacitance	density		
			(F g ⁻¹)			
Activated carbon850-1	КОН	1968	223	0.1 A g ⁻¹	6 mol L ⁻¹ KOH	[1]
N,S,O-doped PC	КОН	1593.8	285	0.5 A g ⁻¹	6 mol L ⁻¹ KOH	[2]
PICNs(NiSSC-140-2-0.45)	КОН	2372.18	312	0.5 A g ⁻¹	6 mol L ⁻¹ KOH	[3]
Nanohexahedron PC	Carbonizing ZIF-8	1142	187	0.5 A g ⁻¹	2 mol L ⁻¹ KOH	[4]
C-N bond PC	КОН	3965	342	1 A g ⁻¹	6 mol L ⁻¹ KOH	[5]
NPCM-600	КОН	1778	298	1 A g ⁻¹	6 mol L ⁻¹ KOH	[6]
AC	H ₃ PO ₄	633.43	234.4	1 A g ⁻¹	1 mol L ⁻¹ KOH	[7]
WP carbon	КОН	416.59	160	1 mAcm ⁻²	6 mol L ⁻¹ KOH	[8]
AC-35	КОН	2312	342.8	0.5 A g ⁻¹	KOH/LiOH	[9]
BL-ACs	КОН	3557	188	1 mAcm ⁻²	0.1molL ⁻¹ H ₂ SO ₄	[10]
AHC-4	КОН	849	264	0.25 A g ⁻¹	6 mol L ⁻¹ KOH	[11]
N-doped porous carbon	CO ₂	1414.97	179	1 A g ⁻¹	6 mol L ⁻¹ KOH	[12]
3D-MP-CFW	КОН	1270	240	1 A g ⁻¹	6 mol L ⁻¹ KOH	[13]
LC-550-1	NaNH ₂	1087	266	0.5 A g ⁻¹	6 mol L ⁻¹ KOH	[14]
OAC-4	КОН	2869	287	0.5 A g ⁻¹	6 mol L ⁻¹ KOH	[15]
PNPC-4	КОН	2599.61	287.1	1 A g ⁻¹	6 mol L ⁻¹ KOH	[16]
N, O-PC-CNTs	KOH-IL	2164	287	0.2 A g ⁻¹	6 mol L ⁻¹ KOH	This
						work

carbons in the literatures.

Samples	Synthetic method	$S_{\rm BET}$	CO ₂ uptake	Ref.
	(activation agent)	$(m^2 g^{-1})$	$(mmol g^{-1})$	
C-char -800	CO ₂ -ammonia	610	2.26	[17]
ANCs-3-700	КОН	3401	4.7	[18]
C-KU-600	KOH/Urea	1087	3.5	[19]
BGC-1-700	КОН	1258	3.46	[20]
SMLK-1	LiCl/KCl	951	3.00	[21]
MB	КОН	1379	2.50	[22]
NAC	КОН	1593	3.20	[23]
CRF	K ₂ CO ₃	595-683	2.3-3.0	[24]
MMCs	CO ₂	1192	3.60	[25]
AC	КОН	1503	3.15	[26]
PC-2:1-700	КОН	1433	3.68	[27]
BC	CO ₂	809	2.20	[28]
OTSS-3-350	NaNH ₂	779	3.50	[29]
CN-600-3	K ₂ CO ₃ /CN	1082	3.71	[30]
CAC-S	NaOH	1149	4.28	[31]
WTP-PVA	Annealing	783-1384	2.62-2.91	[32]
АС-900-800-1-Н	N ₂ /CO ₂	798	2.94	[33]
N, O-PC-CNTs	KOH-IL	2164	3.7	This work

Table S4 Comparision of the CO₂ adsorption performance at 25°C of porous carbons in the literatures

References

- J. Serafin, M. Baca, M. Biegun, E. Mijowska, R. J. Kalenczuk, J. Srenscek-Nazzar and B. Michalkiewicz, *Appl Surf Sci*, 2019, 497, 143722.
- D. Zhang, Y. C. Xue, J. L. Chen, X. M. Guo, D. D. Yang, J. C. Wang, J. H. Zhang, F. Zhang and A. H. Yuan, *J Nanosci Nanotechno*, 2020, 20, 2728-2735.
- R. X. Xu, Y. P. Zhao, G. H. Liu, J. S. Zhu, R. Y. Wang, J. P. Cao and X. Y. Wei, *J Colloid Interf Sci*, 2020, 558, 211-219.
- 4. J. Wu, X. P. Zhang, F. X. Wei, Y. W. Sui and J. Q. Qi, *Mater Lett*, 2020, **258**, 211-219.
- P. Han, M. S. Cheng, D. H. Luo, W. Cui, H. C. Liu, J. G. Du, M. L. Wang, Y. P. Zhao, L. Chen, C. Z. Zhu and J. Xu, *Energy Storage Mater*, 2020, 24, 486-494.
- 6. D. M. Xue, S. C. Qi, X. Liu, Y. X. Li, X. Q. Liu and L. B. Sun, *J Ind Eng Chem*, 2019, **80**, 568-575.
- 7. M. Sivachidambaram, J. J. Vijaya, L. J. Kennedy, R. Jothiramalingam, H. A. Al-Lohedan, M. A.

Munusamy, E. Elanthamilane and J. P. Merlin, New J Chem, 2017, 41, 3939-3949.

- D. Kalpana, S. H. Cho, S. B. Lee, Y. S. Lee, R. Misra and N. G. Renganathan, *Journal Of Power Sources*, 2009, 190, 587-591.
- 9. X. J. He, Y. J. Geng, J. S. Qiu, M. D. Zheng, S. A. Long and X. Y. Zhang, *Carbon*, 2010, 48, 1662-1669.
- S. G. Lee, K. H. Park, W. G. Shim, M. S. Balathanigaimani and H. Moon, *J Ind Eng Chem*, 2011, 17, 450-454.
- W. J. Si, J. Zhou, S. M. Zhang, S. J. Li, W. Xing and S. P. Zhuo, *Electrochimica Acta*, 2013, 107, 397-405.
- 12. E. Lei, W. Li, C. H. Ma, Z. Xu and S. X. Liu, *Appl Surf Sci*, 2018, 457, 477-486.
- 13. Y. Li, X. Wang and M. H. Cao, *J Co2 Util*, 2018, 27, 204-216.
- S. F. Liu, P. P. Yang, L. L. Wang, Y. L. Li, Z. Z. Wu, R. Ma, J. Y. Wu and X. Hu, *Energ Fuel*, 2019, 33, 6568-6576.
- 15. Y. T. Li, Y. T. Pi, L. M. Lu, S. H. Xu and T. Z. Ren, Journal Of Power Sources, 2015, 299, 519-528.
- Y. B. Zhou, J. Ren, Y. Yang, Q. J. Zheng, J. Liao, F. Y. Xie, W. J. Jie and D. M. Lin, *J Solid State Chem*, 2018, 268, 149-158.
- X. Zhang, S. H. Zhang, H. P. Yang, Y. Feng, Y. Q. Chen, X. H. Wang and H. P. Chen, *Chemical Engineering Journal*, 2014, 257, 20-27.
- 18. H. M. Wei, J. Chen, N. Fu, H. J. Chen, H. L. Lin and S. Han, *Electrochimica Acta*, 2018, 266, 161-169.
- 19. W. Z. Shen, T. P. Hu, P. Y. Wang, H. Z. Sun and W. B. Fan, *Chempluschem*, 2014, 79, 284-289.
- 20. A. Chithra, P. Wilson, R. Rajeev and K. Prabhakaran, *Mater Res Express*, 2018, 5, 115606.
- 21. A. Rehman and S. J. Park, J CO₂ Util, 2019, 34, 656-667.
- 22. J. Serafin, U. Narkiewicz, A. W. Morawski, R. J. Wrobel and B. Michalkiewicz, *J CO₂ Util*, 2017, **18**, 73-79.
- 23. G. Sethia and A. Sayari, *Carbon*, 2015, **93**, 68-80.
- 24. J. Du, W. C. Li, Z. X. Ren, L. P. Guo and A. H. Lu, J Energy Chem, 2020, 42, 56-61.
- 25. J. Phuriragpitikhon, P. Ghimire and M. Jaroniec, J Colloid Interf Sci, 2020, 558, 55-67.
- 26. C. Quan, X. Y. Jia and N. B. Gao, Int J Energ Res, 2019, DOI: 10.1002/er.5017.
- 27. G. Singh, I. Y. Kim, K. S. Lakhi, P. Srivastava, R. Naidu and A. Vinu, *Carbon*, 2017, **116**, 448-455.
- P. C. Vilella, J. A. Lira, D. C. S. Azevedo, M. Bastos-Neto and R. Stefanutti, *Ind Crop Prod*, 2017, 109, 134-140.
- Y. Zhang, L. Liu, P. X. Zhang, J. Wang, M. Xu, Q. Deng, Z. L. Zeng and S. G. Deng, Chemical Engineering Journal, 2019, 355, 309-319.
- L. M. Yue, Q. Z. Xia, L. W. Wang, L. L. Wang, H. DaCosta, J. Yang and X. Hu, *J Colloid Interf Sci*, 2018, 511, 259-267.
- Y. F. Guo, C. Tan, J. Sun, W. L. Li, J. B. Zhang and C. W. Zhao, *Chemical Engineering Journal*, 2020, 381, 122736.
- 32. L. Vazhayal, P. Wilson and K. Prabhakaran, *Chemical Engineering Journal*, 2020, 381, 122628.
- A. E. Ogungbenro, D. V. Quang, K. A. Al-Ali, L. F. Vega and M. R. M. Abu-Zahra, *J Environ Chem* Eng, 2018, 6, 4245-4252.