Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information to

Ordered SnO₂ Nanotube Arrays of Tuneable Geometry as a Lithium Ion Battery Material with High Longevity

Ying Zhuo,^a Sarah Tymek,^a Hong Sun,^a Maïssa K. S. Barr,^{a,b} Lionel Santinacci,^b and Julien Bachmann^{a,c,*}

Figure S1. Nyquist plots of galvanostatic electrochemical impedance spectroscopy (EIS) measurements recorded of SnO₂ nanotube electrodes. Equivalent electrical circuit models shown in Figure 8 are used to fit the spectra of sample. (*a*) EIS measurements were performed on SnO₂ nanotube electrode (ℓ = 40 nm, *L* = 30 µm, 4 mm macroscopic sample diameter), which was charged/discharged to a certain voltage before EIS measurements. (*b*) EIS spectra for SnO₂ nanotube electrodes with different wall thicknesses in the delithiated state after 10 lithiation/delithiation cycles.

	<i>R</i> s / Ω	<i>Q</i> _{SEI} / μS s ^{0.8}	R _{SEI} / Ω	<i>Q</i> _{dl} / μS s ^{0.9}	R _{sf+ct} / Ω
lithiation					
1.38 V	12.4 ± 0.2	42.5 ± 1.2	70.5 ± 11	5.9 ± 0.3	557.9 ± 10
0.48 V	9.4 ± 0.3	23.9 ± 0.6	116.1 ± 13	8.1 ± 0.7	286.8 ± 12
0.22 V	8.8 ± 0.2	25.5 ± 0.7	213.9 ± 45	8.1 ± 1.2	411.1 ± 39
delithiation					
0.40 V	9.4 ± 0.2	25.9 ± 0.8	237.3 ± 55	8.5 ± 1.4	426.3 ± 47
0.50 V	9.1 ± 0.2	25.3 ± 0.7	242.2 ± 52	9.1 ± 1.4	399.4 ± 46
0.60 V	10.2 ± 0.2	26.2 ± 0.7	210.5 ± 44	9.1 ± 1.4	356.4 ± 39
0.90 V	8.7 ± 0.2	23.7 ± 0.4	170.2 ± 20	10.0 ± 1.0	317.3 ± 18
different					
thicknesses					
10 nm	9.0 ± 0.1	3.7 ± 0.09	34.0 ± 2	2.3 ± 0.07	193.9 ± 2
20 nm	11.9 ± 0.1	8.0 ± 0.30	17.8 ± 1	3.4 ± 0.09	192.9 ± 2
30 nm	11.8 ± 0.1	3.7 ± 0.10	31.6 ± 3	1.8 ± 0.07	194.7 ± 3
40 nm	12.1 ± 0.1	2.4 ± 0.05	46.5 ± 2	1.8 ± 0.04	405.4 ± 3
50 nm	15.3 ± 0.2	3.0 ± 0.06	79.2 ± 5	3.4 ± 0.2	169.7 ± 5

Table S1. Summary of EIS parameters fitted for various SnO₂-based systems. The first two datasets refer to a sample with 40 nm tube wall thickness at various stages of charge and discharge. The third dataset compares samples with various tube wall thicknesses in the discharged state at 2.80 V.

Figure S2. Galvanostatic charging and discharging curves of SnO_2 nanotube electrodes with 10 nm wall thickness. The length of SnO_2 nanotubes has been varied. (*a*) and (*b*) show specific capacity and absolute capacity of SnO_2 nanotubes with different lengths, respectively.