Supporting Information

Simultaneously Formed and Embedding-type Ternary MoSe₂/MoO₂/Nitrogen-doped Carbon for Fast and Stable Na-ion storage

Yuanxing Yun,^a Jie Shao,^{*a,c} Xuefang Shang,^b Wei Wang,^{a,d} Weibo Huang,^a Qunting Qu^{*a,d} and Honghe Zheng^{*a,d}

Material Characterization. Scanning electron microscopy (SEM) images were obtained using Hitachi S-8010 equipment operated at 10 kV. TEM images were obtained using FEI Tecnai G-20 microscope. Energy dispersive X-ray spectroscopy (EDS) were conducted using JEM-2100F field emission electron microscope. X-ray diffraction (XRD) patterns were collected using PANalytical X'Pert PRO MRD diffractometer with Ni-filtered Cu $K\alpha$ radiation. Raman spectra were measured through JobinYvon LabRAM HR800 Raman spectrometer with an excitation wavelength of 514 nm. Xray photoelectron spectroscopy (XPS) was performed using an ESCA Lab250 spectrometer with a twin-anode Al Ka (1486.6 eV) X-ray source. Elemental analysis (VARIO MICRO) and inductively coupled plasma optical emission spectroscopy (OPTIMA 8000, PerkinElmer) were used to analyze the exact chemical composition of the ternary phases.

Figure S1 (a) XRD pattern and (b) SEM image of the as-prepared totally selenized binary phases $MoSe_2/NC$.

Figure S2 (a) XRD pattern and (b) SEM image of the as-prepared unselenized binary phases MoO₂/NC.

Figure S3 SEM image of pure SPS microspheres.

Figure S4 High-resolution TEM images of MoSe₂/MoO₂/NC.

Figure S5 N_2 adsorption/desorption isotherms of $MoSe_2/MoO_2/NC$.

Figure S6 XPS survey spectrum of MoSe₂/MoO₂/carbon.

Figure S7 The deconvoluted XPS spectra of $MoSe_2/MoO_2/carbon$ in the Se3d core

level region.

Figure S8 The deconvoluted XPS spectra of $MoSe_2/MoO_2/carbon$ in the C1s core level region.

Figure S9 XPS spectra of binary MoO₂/NC in the core-level region of Mo3d.

Figure S10 XPS spectra of binary MoSe₂/NC in the core-level region of Mo3d.

Figure S11 CV curves of the $MoSe_2/NC$ electrode vs. Na^+/Na during the initial three

scans.

Figure S12 CV curves of the MoO_2/NC electrode vs. Na⁺/Na during the initial three scans.

Figure S13 CV curves of the MoO_2/NC electrode vs. Li⁺/Li during the initial three scans.

Figure S14 CV curves of the $MoSe_2/NC$ electrode vs. Li^+/Li during the initial three scans.

Figure S15 CV curves of the $MoSe_2/MoO_2/NC$ electrode vs. Li⁺/Li during the initial three scans.

Tab. S1 The mass percentages of all the elements in $MoSe_2/MoO_2/NC$.

Elements	С	Ν	Мо	0	Se
wt%	31.60%	1.80%	35.02%	6.72%	24.86%

Materials	Initial capacity	Cycling performance	Rate behavior	Reference
N-doped carbon/scale-	489.3 mAh g ⁻¹ at 0.5 A	378 mAh g ⁻¹ after 1000	$308 \text{ mAh g}^{-1} \text{ at}$	1
like MoSe ₂	g^{-1}	cycles at 3 A g ⁻¹	10 A g^{-1}	
MoSe ₂ /graphene	445 mAh g^{-1} at 0.1 A g^{-1}	358 mAh g ⁻¹ after 50	$324 \text{ mAh g}^{-1} \text{ at}$	2
		cycles at 0.4 A g ⁻¹	3.2 A g ⁻¹	
MoSe ₂ nanotubes	304 mAh g ⁻¹ at 0.05 mA	228 mAh g ⁻¹ after 1500	$200 \text{ mAh g}^{-1} \text{ at}$	3
	g^{-1}	cycles at 1 A g ⁻¹	2 A g^{-1}	
MoSe ₂ /N-doped carbon	400 mAh g^{-1} at 0.1 A g^{-1}	138.6 mAh g ⁻¹ after 100	61 mAh g ⁻¹ at	4
microsphere		cycles at 1 A g ⁻¹	10 A g^{-1}	
MoSe ₂ @CoSe/N-doped	485 mAh g ⁻¹ at 0.1 A g ⁻¹	347 mAh g ⁻¹ after 300	392.8 mAh g ⁻¹	5
carbon		cycles at 2 A g ⁻¹	at 2 A g^{-1}	
Carbon nanospheres	498 mAh g^{-1} at 0.1 A g^{-1}	529 mAh g ⁻¹ after 120	$339 \text{ mAh g}^{-1} \text{ at}$	6
encapsulated MoSe ₂		cycles at 1 A g ⁻¹	5 A g ⁻¹	
MoSe ₂ @hollow carbon	687 mAh g ⁻¹ at 1 A g ⁻¹	471 mAh g ⁻¹ after 1000	$382 \text{ mAh g}^{-1} \text{ at}$	7
nanosphere		cycles at 3 A g ⁻¹	10 A g ⁻¹	
MoSe ₂ /N,P-doped carbon	454 mAh g^{-1} at 0.5 A g^{-1}	378 mAh g ⁻¹ after 1000	216 mAh g ⁻¹ at	8
nanosheets		cycles at 0.5 A g ⁻¹	15 A g ⁻¹	
MoSe ₂ nanosheets@	Around 600 mAh g ⁻¹ at	445 mAh g ⁻¹ after 100	$367 \text{ mAh g}^{-1} \text{ at}$	9
carbon	0.1 A g ⁻¹	cycles at 1 A g ⁻¹	5 A g^{-1}	
MoSe ₂ /graphene/carbon	501.6 mAh g^{-1} at 1 A g^{-1}	335 mAh g ⁻¹ after 400	173 mAh g ⁻¹ at	10
nanotube		cycles at 1 A g ⁻¹	30 A g ⁻¹	
MoSe ₂ /MoO ₂ /N-doped	634 mAh g ⁻¹ at 0.14 A	610 mAh g ⁻¹ after 1000	461 mAh g ⁻¹ at	This
carbon	g ⁻¹	cycles at 2.1 A g ⁻¹	70 A g^{-1}	work

Tab. S2 The electrochemical performance of some previously reported MoSe₂-based anodes for Na-ion batteries.

References

1 H. Liu, B. Liu, H. Guo, M. Liang, Y. Zhang, T. Borjigin, X. Yang, L. Wang and X. Sun, *Nano Energy*, 2018, **51**, 639-648.

2 X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui and G. Cao, *Nano Energy*, 2018, **47**, 224-234.

3 J. Zhang, M. Wu, T. Liu, W. Kang and J. Xu, *J. Mater. Chem. A*, 2017, **5**, 24859-24866.

4 C. Zhao, H. Song, Q. Zhuang, Q. Ma, J. Liang, H. Peng, C. Mao, Z. Zhang and G. Li, *Inorg. Chem. Front.*, 2018, **5**, 1026-1032.

5 J. Chen, A. Pan, Y. Wang, X. Cao, W. Zhang, X. Kong, Q. Su, J. Lin, G. Cao and S. Liang, *Energy Storage Materials*, 2019, **21**, 97-106.

6 P. Ge, H. Hou, C. E. Banks, C. W. Foster, S. Li, Y. Zhang, J. He, C. Zhang and X. Ji, *Energy Storage Materials*, 2018, **12**, 310-323.

7 H. Liu, H. Guo, B. Liu, M. Liang, Z. Lv, K. R. Adair and X. Sun, *Adv. Funct. Mater.*, 2018, **28**, 1707480.

8 F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang and Y. Qian, *Adv. Funct. Mater.*, 2017, **27**, 1700522.

9 Y. C. Tang, Z. B. Zhao, Y. W. Wang, Y. F. Dong, Y. Liu, X. Z. Wang and J. S. Qiu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 32324-32332.

10 G. D. Park, J. H. Kim, S.-K. Park and Y. C. Kang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 10673-10683.