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Material Characterization. Scanning electron microscopy (SEM) images were obtained 

using Hitachi S-8010 equipment operated at 10 kV. TEM images were obtained using 

FEI Tecnai G-20 microscope. Energy dispersive X-ray spectroscopy (EDS) were 

conducted using JEM-2100F field emission electron microscope. X-ray diffraction 

(XRD) patterns were collected using PANalytical X’Pert PRO MRD diffractometer 

with Ni-filtered Cu Kα radiation. Raman spectra were measured through JobinYvon 

LabRAM HR800 Raman spectrometer with an excitation wavelength of 514 nm. X-

ray photoelectron spectroscopy (XPS) was performed using an ESCA Lab250 

spectrometer with a twin-anode Al Ka (1486.6 eV) X-ray source. Elemental analysis 

(VARIO MICRO) and inductively coupled plasma optical emission spectroscopy 

(OPTIMA 8000, PerkinElmer) were used to analyze the exact chemical composition 

of the ternary phases.

Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2020



Figure S1 (a) XRD pattern and (b) SEM image of the as-prepared totally selenized 

binary phases MoSe2/NC.
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Figure S2 (a) XRD pattern and (b) SEM image of the as-prepared unselenized binary 

phases MoO2/NC.
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Figure S3 SEM image of pure SPS microspheres.
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Figure S4 High-resolution TEM images of MoSe2/MoO2/NC.
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Figure S5 N2 adsorption/desorption isotherms of MoSe2/MoO2/NC.
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Figure S6 XPS survey spectrum of MoSe2/MoO2/carbon. 



Figure S7 The deconvoluted XPS spectra of MoSe2/MoO2/carbon in the Se3d core 

level region.
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Figure S8 The deconvoluted XPS spectra of MoSe2/MoO2/carbon in the C1s core 

level region.
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Figure S9 XPS spectra of binary MoO2/NC in the core-level region of Mo3d. 
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Figure S10 XPS spectra of binary MoSe2/NC in the core-level region of Mo3d.
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Figure S11 CV curves of the MoSe2/NC electrode vs. Na+/Na during the initial three 

scans.
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Figure S12 CV curves of the MoO2/NC electrode vs. Na+/Na during the initial three 

scans.
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Figure S13 CV curves of the MoO2/NC electrode vs. Li+/Li during the initial three 

scans.
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Figure S14 CV curves of the MoSe2/NC electrode vs. Li+/Li during the initial three 

scans.



Figure S15 CV curves of the MoSe2/MoO2/NC electrode vs. Li+/Li during the initial 

three scans.

Tab. S1 The mass percentages of all the elements in MoSe2/MoO2/NC. 

Elements C N Mo O Se

wt% 31.60% 1.80% 35.02% 6.72% 24.86%
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Tab. S2 The electrochemical performance of some previously reported MoSe2-based 
anodes for Na-ion batteries.
Materials Initial capacity Cycling performance Rate behavior Reference

N-doped carbon/scale-

like MoSe2

489.3 mAh g−1 at 0.5 A 

g−1

378 mAh g−1 after 1000 

cycles at 3 A g−1

308 mAh g−1 at 

10 A g−1

1

MoSe2/graphene 445 mAh g−1 at 0.1 A g−1 358 mAh g−1 after 50 

cycles at 0.4 A g−1

324 mAh g−1 at 

3.2 A g−1

2

MoSe2 nanotubes 304 mAh g−1 at 0.05 mA 

g−1

228 mAh g−1 after 1500 

cycles at 1 A g−1

200 mAh g−1 at 

2 A g−1

3

MoSe2/N-doped carbon 

microsphere

400 mAh g−1 at 0.1 A g−1 138.6 mAh g−1 after 100 

cycles at 1 A g−1

61 mAh g−1 at 

10 A g−1

4

MoSe2@CoSe/N-doped 

carbon

485 mAh g−1 at 0.1 A g−1 347 mAh g−1 after 300 

cycles at 2 A g−1

392.8 mAh g−1 

at 2 A g−1

5

Carbon nanospheres 

encapsulated MoSe2

498 mAh g−1 at 0.1 A g−1 529 mAh g−1 after 120 

cycles at 1 A g−1

339 mAh g−1 at 

5 A g−1

6

MoSe2@hollow carbon 

nanosphere

687 mAh g−1 at 1 A g−1 471 mAh g−1 after 1000 

cycles at 3 A g−1

382 mAh g−1 at 

10 A g−1

7

MoSe2/N,P-doped carbon 

nanosheets

454 mAh g−1 at 0.5 A g−1 378 mAh g−1 after 1000 

cycles at 0.5 A g−1

216 mAh g−1 at 

15 A g−1

8

MoSe2 nanosheets@

carbon

Around 600 mAh g−1 at 

0.1 A g−1

445 mAh g−1 after 100 

cycles at 1 A g−1

367 mAh g−1 at 

5 A g−1

9

MoSe2/graphene/carbon 

nanotube

501.6 mAh g−1 at 1 A g−1 335 mAh g−1 after 400 

cycles at 1 A g−1

173 mAh g−1 at 

30 A g−1

10

MoSe2/MoO2/N-doped 

carbon

634 mAh g−1 at 0.14 A 

g−1

610 mAh g−1 after 1000 

cycles at 2.1 A g−1

461 mAh g−1 at 

70 A g−1
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