Supplementary Information for

High Curie Temperature and Intrinsic Ferromagnetic Half-Metallicity in Two-Dimensional Cr₃X₄ (X= S, Se, Te) Nanosheets

Xiwen Zhang^{1‡}, Bing Wang^{2‡}, Yilv Guo², Yehui Zhang², Yunhai Li², Yunfei Chen^{3*} and

Jinlan Wang²*

¹ School of Mechanism Engineering & School of Physics, Southeast University, Nanjing 211189, China

² School of Physics, Southeast University, Nanjing 211189, China
³School of Mechanism Engineering, Southeast University, Nanjing 211189, China

‡ Xiwen Zhang and Bing Wang contributed equally to this work.

Corresponding Authors: *E-mail: jlwang@seu.edu.cn; yunfeichen@seu.edu.cn

Table of Contents

- 1. The crystal structures of layered Fe_3S_4 bulk and monolayer
- 2. The possible magnetic configurations and the corresponding spin charge densities of Cr_3X_4 (X= S, Se, Te) monolayers
- 3. Relative energies between FM and AFM/FIM states for Cr₃X₄ monolayers
- 4. Summary of magnetic anisotropy energies for Cr₃Se₄ and Cr₃Te₄ monolayers
- 5. The ground-state spin configurations in the unit-cell of Cr_3X_4 monolayers
- 6. Calculated partial density of states of Cr₃X₄ monolayers
- 7. Lattice constant (a₀), Cr₁-X-Cr₁ (θ) and Cr-Cr/X bond length of single-layer Cr₃X₄
- 8. Top and side views of magnetic structure for the spin Hamiltonian of Cr₃X₄ monolayers
- 9. The magnetic moment and magnetic susceptibility as functions of temperature for CrI₃ monolayer by Monte Carlo simulations on the basis of 2D Heisenberg Hamiltonian model
- Relative energies of FM/AFM/FIM states as a function of strain and carrier concentration for 2D Cr₃Se₄ and Cr₃Te₄.

Fig. S1 (a) Crystal structure of layered Fe_3S_4 bulk. (b) Top and side views of one Fe_3S_4 sheet. The green and yellow balls represent Fe and S atoms.

Fig. S2 Possible magnetic configurations and the corresponding spin charge densities of Cr_3X_4 (X= S, Se, Te) monolayers.

Table S1 Relative energies (meV/f.u.) between ferromagnetic (FM) and antiferromagnetic/ferrimagnetic (AFM1, AFM2, FIM1, FIM2, and FIM3) states for Cr_3X_4 (X= S, Se, Te) monolayers. Ground states are highlighted with green backgrounds.

Material Name	E _{FM-FM}	E _{FM-AFM1}	E _{FM-AFM2}	E _{FM-FIM1}	E _{FM-FIM2}	E _{FM-FIM3}
Cr ₃ S ₄	0	-78.5	45.7	<mark>146.6</mark>	70.4	-27.8
Cr ₃ Se ₄	0	-292.9	-225.2	-145.5	-58.6	-268.7
Cr ₃ Te ₄	0	-487.6	-456.9	-367.3	-218.6	-350.2

Material Name	E(100) – E(001)	E(010) – E(001)	E(001) – E(001)
Cr ₃ Se ₄	145.9	146.0	0
Cr ₃ Te ₄	101.0	127.3	0

Table S2 Summary of magnetocrystalline anisotropy energy in $\mu eV/Cr$ for Cr_3Se_4 and Cr_3Te_4 monolayers.

Fig. S3 Ground-state spin configurations in the unit-cell of Cr_3X_4 (X= S, Se, Te) monolayers.

Fig. S4 Calculated partial density of states (PDOS) of (a) Cr_3S_4 , (b) Cr_3Se_4 , and (c) Cr_3Te_4 monolayers.

Materials	a ₀ (Å)	θ (deg)	Cr ₁ -Cr ₁ (Å)	Cr ₁ -X ₁ (Å)	$Cr_2-X_2(\text{\AA})$	Cr ₁ -Cr ₂ (Å)
Cr ₃ S ₄	3.44	95.90	3.44	2.32	2.43	3.02
Cr ₃ Se ₄	3.68	95.72	3.68	2.48	2.62	3.19
Cr ₃ Te ₄	4.01	95.63	4.01	2.71	2.85	3.26

Table S3 Lattice constant (a₀), Cr_1 -X- $Cr_1(\theta)$ and Cr-Cr/X bond length of single-layer Cr_3X_4 (X= S, Se and Te).

Fig. S5 Top and side views of magnetic structure for the spin Hamiltonian of Cr₃Se₄ and Cr₃Te₄ monolayers. J_1 and J_2/J_3 are defined as interlayer and intralayer exchange coupling parameters. A is anisotropy energy parameter. i and $i+\sigma$ respect the positions of the two interacting Cr atoms. $S_{l,i}^{z}$ is the spin vector of each Cr atom. Dark blue and gray balls respect Cr and X atoms, respectively.

Fig. S6 Magnetic moment (black data) and magnetic susceptibility χ (red data) as functions of temperature for CrI₃ monolayers by Monte Carlo simulations on the basis of 2D Heisenberg Hamiltonian model.

Fig. S7 Relative energies of FM/AFM/FIM states as a function of strain (a) and carrier concentration (b) for 2D Cr_3Se_4 and Cr_3Te_4 . The positive and negative values refer to electron and hole doping, respectively.