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Supplementary Figure 1. Diffraction data for mirrored S-shaped nanograting perfectly flips in

sign in both experiment and simulation
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Supplementary Figure 2. Circular intensity difference measured for racemic nanograting almost

identical for increased angles of incidence.
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Supplementary Figure 3. Quarter-waveplate (QWP) long pathlength performance test. The top
shows the schematic setup. Two linear polarizers are set at 90° to each other with a QWP
between them. The distance between the QWP and the collection fiber is identical to the
experimental configuration used for all experiments. The QWP is rotated in 1° until fully rotated
and for each angle a spectrum is taken. The heatmap shows that the QWP creates circularly
polarized light when orientated at 45°, 135°, 225° and 315° respectively, as expected. Thus, we
can conclude that the light coupling into the fiber as well as the beam deviation induced by the

QWP are negligible.

Supplementary Note 1: Near Field — Far Field Transformation

Here, we follow the general procedure for the near field — far field transformation to evaluate the
electromagnetic fields at an observation plane positioned at Z> 0 above the sample. There are three
essential steps.

Part I: Main Equations including Free Electric and Magnetic Current Sources

Maxwell’s equations are

VXEz—aa—]?—MfSVXEzﬂa)B—MP \* MERGEFORMAT (1)
oD . .
VxH=+—"+J, = VxH=—ioD+J,. \* MERGEFORMAT (2)

In \* MERGEFORMAT (1) and \* MERGEFORMAT (2), Jf and Mr are free electric and magnetic currents.
They are imposed currents serving as sources for electromagnetic fields E and H. Assume the space is
homogeneously filled with a medium whose permittivity and permeability are € and 4. Therefore, the
electric displacement D and the magnetic induction field B are linked with the electric field and the
magnetic field via,

D=¢E, B=uH. \* MERGEFORMAT (3)
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Substitute the constitutive relations in \* MERGEFORMAT (3) into \* MERGEFORMAT (1) and \*
MERGEFORMAT (2),

VxE=+ioB-M, = VxE=+iouH-M , \* MERGEFORMAT (4)
VxH=—ioD+J, = VxH=—iocE+J,. \* MERGEFORMAT (5)

Taking the divergence of \* MERGEFORMAT (5) leads to
V-VxH=V-(-iweE+J, )= 0=—ioV -D+iwvp, = V-D=p,. \* MERGEFORMAT (6)

Taking the divergence of \* MERGEFORMAT (4) leads to,
V-VxE=V-(+ioB-M, )= 0=+ioV-B-iwp, =V -B=p,. \* MERGEFORMAT (7)

In \* MERGEFORMAT (6) and \* MERGEFORMAT (7), we have used 1) that the divergence of the curl is
zero and 2) the continuity relation.

Electric Current Source

When there are electric currents but no magnetic currents, equations \* MERGEFORMAT (4) - \*
MERGEFORMAT (7) reduce to

VxE =+iouH, VxH =—ia)8E+Jf,

\* MERGEFORMAT (8)
V-D=p,, V-B=0.

Since the magnetic induction field is divergence free, we can introduce a vector potential,
B=VxA. \* MERGEFORMAT (9)

Use \* MERGEFORMAT (9) in the first equation of \* MERGEFORMAT (8),
VxE =+ioV xA = Vx(E-ioA)=0=E=ioA-Vg,. \* MERGEFORMAT (10)

Substitute \* MERGEFORMAT (9) and \* MERGEFORMAT (10) into the second equation of \*
MERGEFORMAT (8),

VA +KA=—ud,, VA =iosup,. \* MERGEFORMAT (11)

Magnetic Current Source

When there are magnetic currents but no electric currents, equation \* MERGEFORMAT (4) - \*
MERGEFORMAT (7) reduce to

VxE =+iogH-M ;, VxH = —iweE,
: \* MERGEFORMAT (12)
V-D=0,V-B=p,.
Since the electric displacement field is divergence free, we can introduce a vector potential,
D=-VxF. \* MERGEFORMAT (13)

Use \* MERGEFORMAT (13) in the second equation of \* MERGEFORMAT (12),



VxH=ioVxF=Vx(H-ioF)=0=H=ioF-Vg,. \* MERGEFORMAT (14)

Substitute \* MERGEFORMAT (13) and \* MERGEFORMAT (14) into the first equation in \*
MERGEFORMAT (12)

VF+k’F=—¢M,, V-F = iosup,. \* MERGEFORMAT (15)

In \* MERGEFORMAT (11) and \* MERGEFORMAT (15), we have defined a wave number e =Jeuk, where

ko is the vacuum wavenumber.

Vector potentials

From \* MERGEFORMAT (11) and \* MERGEFORMAT (15), the electric and magnetic vector potentials can
be expressed in terms of scalar green’s function 9(7,") which links the field at an observation point 7" with
the source at a source point 7,

ik|r—r|

A(r):%jsg(r,r').Jf(r )ds' =~ j B -3, (r')ds', \* MERGEFORMAT (16)

zk\r r

F(r):ijsg(r,r')-M/(r’)ds' j|r —-M, (r')ds". \* MERGEFORMAT (17)

In \* MERGEFORMAT (16) and \* MERGEFORMAT (17), the integration is conducted with respect to a
domain S carrying the free electric and free magnetic currents. The domain may be a 1D, a 2D or a 3D
region.

Electric and magnetic fields

Electric and magnetic fields can be expressed in terms of vector potentials,

1 1

E =ia)[A+k—2V(V-A)}——VxF, \* MERGEFORMAT (18)
&
1 1

H :ia)[F+pV(V-F)}+—V><A. \* MERGEFORMAT (19)
y7,

Part 2: Scalar and Dyadic Green’s Function in the Fourier-transformed Domain for the Free Space Case

The Wely identity expands the scalar green’s function in \* MERGEFORMAT (16) in terms of plane waves,

zk‘r r| i ez’kY (x=x"Yrik, (y=y" )ik, (z-2") \* ( )
dk _dk . MERGEFORMAT (20
4z|r—r | 87’ ” k Ty

g(rr)=———

z

In \* MERGEFORMAT (20), we assume that the observation point is above the source point Z>Z" and k,
is defined as

k = kz—kf—kf,. \* MERGEFORMAT (21)

z

It is always assumed that the imaginary part of k, is positive to satisfy the radiation boundary condition.



Dyadic Green’s Function in the Fourier-transformed Domain

The dyadic green’s function is
E(r r')= (I+—VVJ (r.r")
— (i j J.JA ik-(r— r) dk dk

In \* MERGEFORMAT (22), I is a unit 3 by 3 identity matrix. Especially,

\* MERGEFORMAT (22)

o o o’
ox>  Oxdy Oxoz

) ) 5 —kx2 —k.k, —kk.
ik-(r-r'") 0 0 0 ik-(r—r") 2 ik-(r—r") ko(r-r') \ %
VV(e ): g e = —kk -k —kk e - Kkke™ ™), \* MERGEFORMAT (23)
oxdy oy oyoz A ! -
62 62 82 _k.\’ kz _ky kz _kz2
ox0z 0Oyoz 0z’

Substitute \* MERGEFORMAT (23) into \* MERGEFORMAT (22)

. 37.2 _ . ,
L[ 2R g i, \* MERGEFORMAT (24)
ey | 8

G(r)=3 Kk,

The Curl of the Dyadic Green’s Function in the Fourier-transformed Domain

The curl of the dyadic Green’s function in \* MERGEFORMAT (24) is

i ikz _kk [k-(r—r')
— | Lv{we dk,dk,

” V) kkk dk,dk, \* MERGEFORMAT (25)

\% xa(r,r')z

I . Ik -kk iKk-(r-r'
:Wﬁwzkxwe "k dk,.

In \* MERGEFORMAT (25), it is noticed that
kx(kk):(kxk)k:O. \* MERGEFORMAT (26)

Therefore, \* MERGEFORMAT (25) is reduced to

VxG(r,r')= 8’7 [ j'wll;—XIe""‘("")dkxdky. \* MERGEFORMAT (27)

Part 3: Dyadic Green’s Function in the transformed space for periodic structures

Poisson Summation

For a 2D lattice, it is well-known that the Poisson summation reads,



Z -kR, 25(]( K ) \* MERGEFORMAT (28)

R,

In \* MERGEFORMAT (28), R» =P12 + P2D s 5 attice vector in the 2D lattice where @ and b are two unit

vectors in the XY plane and P = (P1P2) is a two-element tuple. Kn=™7 + 135 is 5 Jattice vector in the

corresponding reciprocal lattice where T and S are two unit vectors in the X¥ plane and " = (ny1,) is a
two-element tuple.

Evaluation of Periodic Greens Function

The periodic sum of the dyadic green’s function is
ZE(r,m R, )™
R,

—kk eik-(r—r'—Rn )eikp‘R“ dkvdkv

i ikz —kk ik-(r-r') —i(k—kp)R,
=WILWe Ze dk dk, \* MERGEFORMAT (29)
I ik2 - ik-(r— r) 472'
:WILW Za(k ko-K, ) dk,dk,
i Ik qq tq (r- r)
YT g

In \* MERGEFORMAT (29), the following definitions are employed,

q=(ke+K,.q.). q. = sz - (kp+K, ) (ko +K, ) \* MERGEFORMAT (30)

It is noticed that in \* MERGEFORMAT (29),

2

) K-q; -q9.4, -q.4.
K -qq=| —¢.9, k' -q;, -q,4. | \* MERGEFORMAT (31)

~4.4. ~4,9. k' -¢
The periodic sum of the curl of the dyadic green’s function is

ZV x a(r, r'+ Rn )e[kP»Rn
Rl\

—Z ‘U ikxI TR, kR dk. dk

_ i ikx1 ik-(r—r") ~i(k—kp)R, *
el Te dk. dk, \* MERGEFORMAT (32)
:812 lkaI ik-(r-r') 47* 25(1( k K )dk dk

7[ z

_iaxT e
24 K, 9.



In \* MERGEFORMAT (32), the following definitions are employed,

q=(k+K,.q.). ¢. = \/kz -(kp+K, ) (ko +K, ) \* MERGEFORMAT (33)
It is noticed that the cross product in \* MERGEFORMAT (32) gives
qx1=qx(kk+§y +22)
=(qxX)X+(qxy)y+(qx2)z

= [qzyﬁ_ qyii:| + [_qziy + qxiy]"" [q)»ii - qui:| \* MERGEFORMAT (34)

Il
)
N

S
|
=
=

fxk=0, xk=-2, ixk =7, \* MERGEFORMAT (35)
§x§ =2, §x§=0, 2xy =%, \* MERGEFORMAT (36)
Rxz=—Y, §x2=%, ix2=0. \* MERGEFORMAT (37)

Electromagnetic fields due to a 2D array of sources

Based on \* MERGEFORMAT (18) and \* MERGEFORMAT (19), the electromagnetic fields due to a 2D array
of phased sources are

E(l'): iwﬂZISa(rar‘+ Rn )J (r')eikp.R" ds'— Z‘LV Xa(r’r‘+ Rn ) M(l")eikp'k" ds'

\* MERGEFORMAT (38)
—la),u_[ ZG(F r'+R, )™ I (r')ds' —I ZVXG(}“ r'+R, ) - M(r")ds',

H(r)= iweZLE(r,r '+R, )M (r")e" " ds'+ ZLV xG(r,r'+R, ) J(r")e" " ds'

N N \* MERGEFORMAT (39)
—za)g_[ ZG(r r'+R,)e wR "-M(r')ds' +I ZVXG(r r'+R,)e wR nJ(r")ds

Using the final results from \* MERGEFORMAT (29) and \* MERGEFORMAT (32), e.g., in \*
MERGEFORMAT (38), we find

E(r) —lwﬂLZAZ‘k 9 ey oy [ Z"‘“ M)

24%

i <K —qq g i igx1 W g
=i ﬂﬂz e J I e ds' e Ay [ M(r)e " ds"- € \* MERGEFORMAT (40)

= ZE(q)e“”.
Kll
In \* MERGEFORMAT (40), we have the following definitions,

E(q)=G,(a)-J(a)+G,, (a)-M(q). \* MERGEFORMAT (41)



In \* MERGEFORMAT (41), Gee and Cem are the dyadic Green’s function that respectively link electric

currents and magnetic currents with electric fields,

G = jou—
ee (q) oy 2A kzq:

B

And J(9) and M(Q) are the Fourier coefficients,

J(q)= _[S J(r')e ™™ ds', M(q)= L M(r')e " ds"

Supplementary Note 2: Symmetries of the 4L Racemic Structure

i 1> —qq (@)= i iq><I'

\* MERGEFORMAT (42)

\* MERGEFORMAT (43)

Supplementary Figure 4. An illustration of the symmetries in the 4L racemic structure. In the

plot, the squares filled by the green colour represent a centre of rotation of order four, while the

diamonds filled by the pink colours represent a centre of rotation of order two. Further, the solid

purple lines represent two axes of reflection. The cyan and green dashed squares delineate the

“normal” and “mirror” 4L unit cells, respectively. Lastly, two possible coordinate frames, that is,

the ¥ - ¥ coordinate system and the " ~ ™y coordinate system, are marked by the black and purple

colours.

It can be readily seen from each unit cell that the sample holds a four-fold rotational symmetry.
Additionally, it is less apparent that there are two reflection axes (see the purple solid lines in Figure S4)



and they do not coincide with the rotation centres of the unit cells. These symmetries form a b, point
group. The point group together with the square lattice form the so-called P49 plane group!®.

Supplementary Note 3: Polarization of Incident Field in Different Coordinate Frame

Assume that there is a plane wave propagating along the negative Z direction and being left (right)
circularly polarized with an unit amplitude. As shown in Figure S4, in the ¥ — ¥ coordinate frame (i.e., the
original frame), the polarization can be expressed as

E, = %(ﬁ +if)e " By = %(f; —if)e \* MERGEFORMAT (44)

In the ™x ~ ™y coordinate frame (i.e. the rotated frame), the polarization can be expressed as
E, =E, (i, +im, ), E, =E, (, —ith, ). \* MERGEFORMAT (45)

In \* MERGEFORMAT (44) and \* MERGEFORMAT (45), X and Y are the unit vectors in the X =¥

coordinate frame, while ™x and ™y being the unit vectors in the My =My coordinate frame. The unit
vectors in the original and rotated frame are related,

\* MERGEFORMAT (46)

Therefore, the field components in the rotated frame are,
E, :%(m), E/ :%(1—1-). \* MERGEFORMAT (47)

Therefore, combing \* MERGEFORMAT (45) with \* MERGEFORMAT (47) shows that,

1 . . 1 .
E, =——¢™* (i +im, Je ™, E, =—=e " (, —im, )e ™. \* MERGEFORMAT (48)
1L \/5 ( y) R \/E ( y )e
\* MERGEFORMAT (48) tells that the light is still a left (right) circularly polarized in the rotated frame but
with a possible phase difference, which is expected because a coordinate transformation does not alter
the physical property of the system.

Supplementary Note 4: Symmetries in the Response from the 4L Racemic Structure

For the sake of clarity, we present the main conclusion of this section: the reflection from the 4L
Racemic Structure is identical for the LCP incident light and the RCP incident light. In the following, we
prove this argument by rigorous mathematical procedures.

Step 1: Volume Integral Equation (VIE) Formulation for the Light-Matter Interaction

Before delving into the details, we would like to clarify two conventions adopted in the derivations. On
the one hand, we use the Sl units. On the other hand, since we formulate the problem in the frequency

. . . . . —-iwt .
domain, we employ the physical time convention, i.e., € “* where @ is the angular frequency.
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As discussed in 24 and under the assumption of the local-response material model, the interaction of
light with metallic nanoscatterers (e.g. the 4L structures in the 2D array) can be described in terms of a
volume integral equation (VIE),

Z(3,04 (r))=E, (r). \* MERGEFORMAT (49)

In \* MERGEFORMAT (49), by applying the volume equivalence principle 4], Jind(") 3re induced electric

currents flowing in the volume of the nanoscatterers and Einc(") is an incident light applied onto the
scatterers. The Z operator is defined as

z (Jind (r)):

B (0)=i0opt, [ G (r.x',@)-d,,, (') dv'. \* MERGEFORMAT (50)

1
—iwz, (¢, (r,0)-1)

In \* MERGEFORMAT (50), we assume that the nanoscatterers are positioned on top of a multilayer
structure (e.g., in our experiment, the layers include the SiO2 layer and the Si layer) and immersed in

vacuum. The vacuum is characterized by the vacuum permittivity €0 and the vacuum permeability o.
Then, the nanoscatterers occupying a volume V are assumed to be non-magnetic and are

electromagnetically characterized by a frequency dependent permittivity r(w) Lastly, G(TT ®) is the
so-called dyadic Green’s function, which links an observation point 7" with a source point " at a
frequency @. Due to the multilayer structure considered, the dyadic Green’s function has two parts, the

direct field part, Go(rr ) ,and the reflected field part, G, (rr ,w). Both Green’s functions can be
compactly written in the following generic form in the reciprocal space,

G, (r.r',0)=G,, (r,r',0)+G} (r,r' o). \* MERGEFORMAT (51)

In \* MERGEFORMAT (51), the dyadic Green’s function for the direct field case and the reflected field
case is split into two parts: the part for the s polarized waves and the part for the p polarized waves.
Each can be further expanded in the spectral domain (or the reciprocal space),

Gy (r,r’ a))— ” M7 (ko k,y 2,2 )™ O g dk . \* MERGEFORMAT (52)

In \* MERGEFORMAT (52), M is the spectral domain representation of the corresponding dyadic Green’s

function. It is functions of in-plane wave numbers kx and %y and the Z coordinate of the observation
point and the source point. Their detailed forms can be found in, e.g. ¥, and listed here,

| K —kk, 0
M; (kx,k},,z,z’):m —kk, k0| \* MERGEFORMAT (53)
S0 0 0

Kk, k, k.k. mk, k;

M (k. k2.2 ) =——~| kkk Kk mek |71 \* MERGEFORMAT (54)
O\ ek k) kS Jk,
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r.(k (st
M (k,.k,.z,2')= A kK0 ) \* MERGEFORMAT (55)
“elo 0 0

“) klk,  kkk o~ +kk
sz;’ kkk, Kk +k i |e“F71\* MERGEFORMAT (56)

O\ -k kL -k K —kg/k_,

M’ (kx,ky,z,z'): _

In \* MERGEFORMAT (53) - \* MERGEFORMAT (56), ko and ¥z are the lateral and vertical wave numbers
and defined as,

k, = K2+ k= k- k2. \* MERGEFORMAT (57)

The square root in the second equation in \* MERGEFORMAT (57) always takes a positive imaginary part
to ensure the radiation boundary condition.

Py
Step 2:the "x operator

Consider the ™x ~ ™y coordinate frame and especially focus on a symmetry operation in the b, group,

that is, M. which mirrors a vector with respect to the " reflection axis. A representation of this
geometric transformation is a matrix,

1 0 0
M. =0 -1 0. \* MERGEFORMAT (58)
0 0 1

Besides, we accordingly introduce a transformation operator® corresponding to the M, operation. The
operator works on a function which can be a scalar function (e.g., an electric charge distribution) and a
vector function (e.g., an electric field distribution) and is defined as

P, (f(x)=r(M]r). B, (£(r))=M, (M ]r) \* MERGEFORMAT (59)

-1
In \* MERGEFORMAT (59), M- represents the inverse of the transformation matrix in \*
MERGEFORMAT (58).

P
Step 3: Commutative relation between the My operator and the Z operator

P
In this section, we prove that the My operator and the Z operator are indeed commutative, that is,

Py Z(3a (v))=2P, (3,0 (v)). \* MERGEFORMAT (60)

Consider the ™x ~ ™y coordinate frame. On the one hand, we focus on the first term in \*
MERGEFORMAT (50). Since the permittivity profile is invariant under the symmetry operation,

P, (2.(r))=¢,(M,'r)=¢,(r), \* MERGEFORMAT (61)
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applying the transformation operator to the first term in \* MERGEFORMAT (50) results in

1
B, —iwe, (gr (rfa’)_l)Jind )
1
=M, — - Jua (M'r)
—iwe, (g, (MXlr,w)—l) \* MERGEFORMAT (62)
1 Mx .Jind (M\_]r)

) —iwe, (gr (M;lr,a))—l

1
_ I)PM‘ (de (r))

N —iwe, (gr (r,a))—

Therefore, the commutative relation is proved. On the other hand, we focus on the volume integral in
the second term in \* MERGEFORMAT (50). Apply the transformation operator to the integral leads to,

P, (]’I/G(r,r',a))oJind (r") dv')
=M, [ G(M.'r.r\0) 3, (') dv'
= IVMX ~G(M;1r,r',w)~ MM J, (') v

\* MERGEFORMAT (63)

In \* MERGEFORMAT (63), it is noted that the transformation is for the observation coordinates.
Substitute the spectral domain representation of the dyadic Green’s function in \* MERGEFORMAT (53)
-\* MERGEFORMAT (56) into \* MERGEFORMAT (63). Especially, take the direct field dyadic Green’s
function for the S polarized waves (i.e., \* MERGEFORMAT (53)) as an example,

.[V M, -G(M;lr,r',a))- MM, (r') dav'

K —kk, 0
—kk, k0| OS g e | MM 3, (1) dv' \* MERGEFORMAT (64)
0 0 0

) 1
=] ﬁﬂw@

I K kk, 0
] ik, |z-2'| ik, (x—x")+ik, (y+y") -1 ' '
0" le O d, |-M M 3 () dv

i 1 :
fgallg)ee B

In \* MERGEFORMAT (64), to reach the second equality, a change of variable kp_) B kp is made. Then, a

change of variable ¥y = -Y'is conducted,

13



,[VM)‘ . %J.J-OOL J ik ‘Z‘ ’ ’k.\ (X_"'v)*ik,\ (J“fy')dkxdky M;l 'MX 'Jind (l") dV’
0
0le ik, |z—z| M 1 ik, (x—x"Y+ik, (v })dk dk Mx.Ji"d(xf’_y!’Zr) '
0

- z \* MERGEFORMAT (65

kX kk, 0
i 1 ’ L ihafe=z| g p-t ik (=2 )ik, (=) Ty
- J‘V WJ‘J;:WM[ kxky kx 0 e .Mx e ’ dkrdky md (M r )dV
e 0 0 0
[ k> k k, 0 ]

(=]

' 1 ] ik, |z—z] _1 ik, (x=x" )ik, (y—y' , ,
= 817.”me Kk K 0| MO g g | B (3 () v

Lastly, it is not hard to see that

K kk, 0 K —kk, 0
M| kk, kK 0|M'=|-kk Kk 0] \* MERGEFORMAT (66)
0 0 0 0 0 0

Therefore, we prove that

B, ([VGg (r.r o) J,. (") dv'): J‘VGS (r,r',a)).RMx (Jml (r’)) dv'. \* MERGEFORMAT (67)
The same procedures can be applied to the rest cases (i.e., \* MERGEFORMAT (54) - \* MERGEFORMAT
(56)). Finally, the commutative relation in \* MERGEFORMAT (60) is proved.

Step 4: On the Application of the Transformation Operator in \* MERGEFORMAT (59) to \*
MERGEFORMAT (49)

First, we assume a LCP incident light,
1 /. o\ ik
E, (I‘)=$(mx + i, Je \* MERGEFORMAT (68)

Mind the phase difference between the LCP in \* MERGEFORMAT (48) and \* MERGEFORMAT (68).
Through \* MERGEFORMAT (49) we find the induced current as,

Z(J,(r))=E,(r). \* MERGEFORMAT (69)

Consider the ™x ~ ™y coordinate frame and apply the transformation operator in \¥* MERGEFORMAT
(59) to both sides of \* MERGEFORMAT (69),

Z(Py I, (r))="P, E,(r). \* MERGEFORMAT (70)

14



In the derivation of \* MERGEFORMAT (70), we use the commutative relation in \¥ MERGEFORMAT (60).
It is not hard to see that the right hand side of \* MERGEFORMAT (70) is just the right circularly
polarized light,

ZP, (J,(r))=E,(r)= Z(J, (r))=E,(r). \* MERGEFORMAT (71)

Therefore, we can conclude that the induced current due to the LCP can be transformed into the induced
current due to the RCP,

J,()=n, (I,(r)) \* MERGEFORMAT (72)

Step 4: the Scattered Field, the Poynting Vector and the Reflected Power

In practice, instead of the induced currents flowing in the nanoscatterers, we are more interested the
scattered field generated by these currents,

E, (r)=—ia),uOJ.VG(r,r',a))-Jind (r') dav', H; (r)=ﬁVxEs (r). \* MERGEFORMAT (73)
0

The volume integral in \* MERGEFORMAT (73) is conducted over the volume of all the nanoscatterers
and the Green’s function is the same as the one in \* MERGEFORMAT (52) - \* MERGEFORMAT (56).
Then, the scattered electric fields generated by the induced currents in \* MERGEFORMAT (69) and \*
MERGEFORMAT (71) are

E, (r)=—iow [ G(r.r'\@)-3, (r') dv', E, (r)=~iou, [ G(r.,r\o)-J,(r') dv' \* MERGEFORMAT (74)

Take into account the relation in \* MERGEFORMAT (72) and the commutative relation in \*
MERGEFORMAT (67),

E,(r)=P, (E,(r)) \* MERGEFORMAT (75)
For the magnetic fields, it can be proven that
H,(r)=-P, (H,(r)). \* MERGEFORMAT (76)

From \* MERGEFORMAT (75) and \* MERGEFORMAT (76), the Z component of the Poynting vector can
be derived,

S,.(xy.2)=E, (x,y.2)H, ,(x,y.2)-E,  (x.y,2)H, ,(x,y,2). \* MERGEFORMAT (77)
Se.(x.3,2)=E, , (x,-y,2)H, ,(x,-y.2)-E,, (x,-y,2)H, , (x,~y,z). \* MERGEFORMAT (78)

Integrate \* MERGEFORMAT (77) and \* MERGEFORMAT (78) with respect to an infinitely large
observation plane at Z above the structure,

P, (z)= J‘Sx S, . (x,y,z)dxdy

* * \* MERGEFORMAT (79)
= Lx [EL’X (x,y,z)HL’y (x.p,2)- E,, (x,y,2)H, (x,y,z)] dxdy,
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P (z)= J‘sx Sy (x,,2)dxdy

E, (x,-y.2)H,  (x,-y,z)-E, , (x,-y,z)H,  (x, —y,z)} dxdy \* MERGEFORMAT (80)

E, . (x y,z)HzJ, (x.3.2)-E,, (x,y,2)H, , (x, y,z)] dxdy.

J.l
J.l

Therefore,

P, (2)=F (). \* MERGEFORMAT (81)

Eg. \* MERGEFORMAT (81) simply points out that the reflected power for the LCP and RCP incident
cases is identical. It should be noted that \* MERGEFORMAT (79) and \* MERGEFORMAT (80) are the
reflected power due to the incident field in \* MERGEFORMAT (68). For the incident field in \*
MERGEFORMAT (48) (which is actually used in the experiment), there is an extra phase factor. However,
this phase factor disappears due to the complex conjugation in \* MERGEFORMAT (79) and \*
MERGEFORMAT (80).
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