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Supplementary Figure 1. Diffraction data for mirrored S-shaped nanograting perfectly flips in 

sign in both experiment and simulation
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Supplementary Figure 2. Circular intensity difference measured for racemic nanograting almost 

identical for increased angles of incidence. 
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Supplementary Figure 3. Quarter-waveplate (QWP) long pathlength performance test. The top 

shows the schematic setup. Two linear polarizers are set at 90° to each other with a QWP 

between them. The distance between the QWP and the collection fiber is identical to the 

experimental configuration used for all experiments. The QWP is rotated in 1° until fully rotated 

and for each angle a spectrum is taken. The heatmap shows that the QWP creates circularly 

polarized light when orientated at 45°, 135°, 225° and 315° respectively, as expected. Thus, we 

can conclude that the light coupling into the fiber as well as the beam deviation induced by the 

QWP are negligible.  

Supplementary Note 1: Near Field – Far Field Transformation

Here, we follow the general procedure for the near field – far field transformation to evaluate the 
electromagnetic fields at an observation plane positioned at  above the sample. There are three 𝑧> 0

essential steps.

Part I: Main Equations including Free Electric and Magnetic Current Sources

Maxwell’s equations are

 \* MERGEFORMAT (1),f fi
t


        


BE M E B M

 \* MERGEFORMAT (2).f fi
t


        


DH J H D J

In \* MERGEFORMAT (1) and \* MERGEFORMAT (2),  and  are free electric and magnetic currents. 𝐽𝑓 𝑀𝑓

They are imposed currents serving as sources for electromagnetic fields  and . Assume the space is 𝐸 𝐻

homogeneously filled with a medium whose permittivity and permeability are  and . Therefore, the 𝜀 𝜇

electric displacement  and the magnetic induction field  are linked with the electric field and the 𝐷 𝐵

magnetic field via, 

 \* MERGEFORMAT (3),  .  D E B H
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Substitute the constitutive relations in \* MERGEFORMAT (3) into \* MERGEFORMAT (1) and \* 
MERGEFORMAT (2),

 \* MERGEFORMAT (4),f fi i         E B M E H M

 \* MERGEFORMAT (5).f fi i         H D J H E J

Taking the divergence of \* MERGEFORMAT (5) leads to

 \* MERGEFORMAT (6)  0 .f e ei i i                 H E J D D

Taking the divergence of \* MERGEFORMAT (4) leads to,

 \* MERGEFORMAT (7)  0 .f m mi i i                 E B M B B

In \* MERGEFORMAT (6) and \* MERGEFORMAT (7), we have used 1) that the divergence of the curl is 
zero and 2) the continuity relation.

Electric Current Source

When there are electric currents but no magnetic currents, equations \* MERGEFORMAT (4) - \* 
MERGEFORMAT (7) reduce to

 \* MERGEFORMAT (8)
,  ,

,  0.
f

e

i i 



      

     

E H H E J
D B

Since the magnetic induction field is divergence free, we can introduce a vector potential,

 \* MERGEFORMAT (9). B A

Use \* MERGEFORMAT (9) in the first equation of \* MERGEFORMAT (8),

 \* MERGEFORMAT (10)  0 .ei i i             E A E A E A

Substitute \* MERGEFORMAT (9) and \* MERGEFORMAT (10) into the second equation of \* 
MERGEFORMAT (8),

 \* MERGEFORMAT (11)2 2 ,  .f ek i       A A J A

Magnetic Current Source

When there are magnetic currents but no electric currents, equation \* MERGEFORMAT (4) - \* 
MERGEFORMAT (7) reduce to

 \* MERGEFORMAT (12)
,  ,

0,  .
f

m

i i 



      

     

E H M H E
D B

Since the electric displacement field is divergence free, we can introduce a vector potential,

 \* MERGEFORMAT (13). D F

Use \* MERGEFORMAT (13) in the second equation of \* MERGEFORMAT (12),
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 \* MERGEFORMAT (14)  0 .mi i i            H F H F H F

Substitute \* MERGEFORMAT (13) and \* MERGEFORMAT (14) into the first equation in \* 
MERGEFORMAT (12)

 \* MERGEFORMAT (15)2 2 ,  .f mk i       F F M F

In \* MERGEFORMAT (11) and \* MERGEFORMAT (15), we have defined a wave number  where 𝑘= 𝜀𝜇𝑘0

 is the vacuum wavenumber.𝑘0

Vector potentials

From \* MERGEFORMAT (11) and \* MERGEFORMAT (15), the electric and magnetic vector potentials can 
be expressed in terms of scalar green’s function  which links the field at an observation point  with 𝑔(𝑟,𝑟') 𝑟

the source at a source point ,𝑟'

 \* MERGEFORMAT (16)       
'

, ' ' ' ',
4 4 '

ik

f fS S
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In \* MERGEFORMAT (16) and \* MERGEFORMAT (17), the integration is conducted with respect to a 
domain  carrying the free electric and free magnetic currents. The domain may be a 1D, a 2D or a 3D 𝑆

region.

Electric and magnetic fields

Electric and magnetic fields can be expressed in terms of vector potentials,

 \* MERGEFORMAT (18) 2

1 1 ,i
k




         
E A A F

 \* MERGEFORMAT (19) 2

1 1 .i
k




         
H F F A

Part 2: Scalar and Dyadic Green’s Function in the Fourier-transformed Domain for the Free Space Case

The Wely identity expands the scalar green’s function in \* MERGEFORMAT (16) in terms of plane waves,

 \* MERGEFORMAT (20) 
     ' ' '

2, .
4 8

x y zik x x ik y y ik z zik

x y
z

e i eg dk dk
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In \* MERGEFORMAT (20), we assume that the observation point is above the source point  and  𝑧> 𝑧' 𝑘𝑧
is defined as

 \* MERGEFORMAT (21)2 2 2 .z x yk k k k  

It is always assumed that the imaginary part of  is positive to satisfy the radiation boundary condition.𝑘𝑧
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Dyadic Green’s Function in the Fourier-transformed Domain

The dyadic green’s function is

 \* MERGEFORMAT (22)
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In \* MERGEFORMAT (22),  is a unit 3 by 3 identity matrix. Especially,�̅�
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Substitute \* MERGEFORMAT (23) into \* MERGEFORMAT (22)
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The Curl of the Dyadic Green’s Function in the Fourier-transformed Domain

The curl of the dyadic Green’s function in \* MERGEFORMAT (24) is
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In \* MERGEFORMAT (25), it is noticed that

 \* MERGEFORMAT (26)    .   k kk k k k 0

Therefore, \* MERGEFORMAT (25) is reduced to

 \* MERGEFORMAT (27)   
2, .

8
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i i e dk dk
k

 




   k r r'k IG r r'

Part 3: Dyadic Green’s Function in the transformed space for periodic structures

Poisson Summation

For a 2D lattice, it is well-known that the Poisson summation reads,
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 \* MERGEFORMAT (28) 
24 .ie
A
     p

p n

k R
n

R K
k K

In \* MERGEFORMAT (28),  is a lattice vector in the 2D lattice where  and  are two unit 𝑅𝑝= 𝑝1𝑎+ 𝑝2𝑏 𝑎 𝑏

vectors in the  plane and  is a two-element tuple.  is a lattice vector in the 𝑥𝑦 𝑝= (𝑝1,𝑝2) 𝐾𝑛= 𝑛1𝑟+ 𝑛2𝑠

corresponding reciprocal lattice where  and  are two unit vectors in the  plane and  is a 𝑟 𝑠 𝑥𝑦 𝑛= (𝑛1,𝑛2)
two-element tuple.

Evaluation of Periodic Greens Function

The periodic sum of the dyadic green’s function is
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In \* MERGEFORMAT (29), the following definitions are employed,

 \* MERGEFORMAT (30)     2, ,  .z zq q k      n n nq k K k K k KP P P

It is noticed that in \* MERGEFORMAT (29),

 \* MERGEFORMAT (31)
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The periodic sum of the curl of the dyadic green’s function is
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In \* MERGEFORMAT (32), the following definitions are employed,

 \* MERGEFORMAT (33)     2, ,  .z zq q k      n n nq k K k K k KP P P

It is noticed that the cross product in \* MERGEFORMAT (32) gives

 \* MERGEFORMAT (34)
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In the derivation of \* MERGEFORMAT (34), the following identities are used

 \* MERGEFORMAT (35)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0,  ,  ,      x x y x z z x y

 \* MERGEFORMAT (36)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,      x y z y y 0 z y x

 \* MERGEFORMAT (37)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  .      x z y y z x z z 0

Electromagnetic fields due to a 2D array of sources

Based on \* MERGEFORMAT (18) and \* MERGEFORMAT (19), the electromagnetic fields due to a 2D array 
of phased sources are
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Using the final results from \* MERGEFORMAT (29) and \* MERGEFORMAT (32), e.g., in \* 
MERGEFORMAT (38), we find
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In \* MERGEFORMAT (40), we have the following definitions,

 \* MERGEFORMAT (41)         .ee em   E q G q J q G q M q
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In \* MERGEFORMAT (41),  and  are the dyadic Green’s function that respectively link electric 𝐺𝑒𝑒 𝐺𝑒𝑚
currents and magnetic currents with electric fields,

 \* MERGEFORMAT (42)   
2

2 ,  .
2 2ee em

zz

i k i ii
A A qk q

  
   

I qq q IG q G q

And  and  are the Fourier coefficients,𝐽(𝑞) 𝑀(𝑞)

 \* MERGEFORMAT (43)       ',  '.i i

S S
e ds e ds      q r q rJ q J r' M q M r'

Supplementary Note 2: Symmetries of the 4L Racemic Structure

Supplementary Figure 4. An illustration of the symmetries in the 4L racemic structure. In the 

plot, the squares filled by the green colour represent a centre of rotation of order four, while the 

diamonds filled by the pink colours represent a centre of rotation of order two. Further, the solid 

purple lines represent two axes of reflection. The cyan and green dashed squares delineate the 

“normal” and “mirror” 4L unit cells, respectively. Lastly, two possible coordinate frames, that is, 

the  coordinate system and the  coordinate system, are marked by the black and purple 𝑥 ‒ 𝑦 𝑚𝑥 ‒ 𝑚𝑦

colours.

It can be readily seen from each unit cell that the sample holds a four-fold rotational symmetry. 
Additionally, it is less apparent that there are two reflection axes (see the purple solid lines in Figure S4) 
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and they do not coincide with the rotation centres of the unit cells. These symmetries form a  point 𝐷4
group. The point group together with the square lattice form the so-called  plane group[1].𝑝4𝑔

Supplementary Note 3: Polarization of Incident Field in Different Coordinate Frame

Assume that there is a plane wave propagating along the negative  direction and being left (right) 𝑧

circularly polarized with an unit amplitude. As shown in Figure S4, in the  coordinate frame (i.e., the 𝑥 ‒ 𝑦

original frame), the polarization can be expressed as

 \* MERGEFORMAT (44)   1 1ˆ ˆ ˆ ˆ,  .
2 2

z zik z ik z
L Ri e i e    E x y E x y

In the  coordinate frame (i.e. the rotated frame), the polarization can be expressed as𝑚𝑥 ‒ 𝑚𝑦

 \* MERGEFORMAT (45)   0 0ˆ ˆ ˆ ˆ,  .L RE i E i   x y x yE m m E m m

In \* MERGEFORMAT (44) and \* MERGEFORMAT (45),  and  are the unit vectors in the  �̂� �̂� 𝑥 ‒ 𝑦

coordinate frame, while  and  being the unit vectors in the  coordinate frame. The unit �̂�𝑥 �̂�𝑦 𝑚𝑥 ‒ 𝑚𝑦

vectors in the original and rotated frame are related,

 \* MERGEFORMAT (46)
1 1 1 1ˆ ˆˆ ˆ ˆ ˆ,  .
2 2 2 2

    x ym x y m x y

Therefore, the field components in the rotated frame are, 

 \* MERGEFORMAT (47)   0 0
1 11 ,  1 .
2 2

E i E i   

Therefore, combing \* MERGEFORMAT (45) with \* MERGEFORMAT (47) shows that,

 \* MERGEFORMAT (48)   4 41 1ˆ ˆ ˆ ˆ,  .
2 2

z zik z ik zi i
L Re i e e i e     x y x yE m m E m m

\* MERGEFORMAT (48) tells that the light is still a left (right) circularly polarized in the rotated frame but 
with a possible phase difference, which is expected because a coordinate transformation does not alter 
the physical property of the system.

Supplementary Note 4: Symmetries in the Response from the 4L Racemic Structure

For the sake of clarity, we present the main conclusion of this section: the reflection from the 4L 
Racemic Structure is identical for the LCP incident light and the RCP incident light. In the following, we 
prove this argument by rigorous mathematical procedures.

Step 1: Volume Integral Equation (VIE) Formulation for the Light-Matter Interaction

Before delving into the details, we would like to clarify two conventions adopted in the derivations. On 
the one hand, we use the SI units. On the other hand, since we formulate the problem in the frequency 
domain, we employ the physical time convention, i.e.,  where  is the angular frequency.𝑒 ‒ 𝑖𝜔𝑡 𝜔
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As discussed in [2–4] and under the assumption of the local-response material model, the interaction of 
light with metallic nanoscatterers (e.g. the 4L structures in the 2D array) can be described in terms of a 
volume integral equation (VIE),

 \* MERGEFORMAT (49)    ,Z ind incJ r E r

In \* MERGEFORMAT (49), by applying the volume equivalence principle [2–4],  are induced electric 𝐽𝑖𝑛𝑑(𝑟)

currents flowing in the volume of the nanoscatterers and  is an incident light applied onto the 𝐸𝑖𝑛𝑐(𝑟)

scatterers. The  operator is defined as𝑍

 \* MERGEFORMAT (50)           0
0

1 , ,  '.
, 1 V

r

Z i dv
i

 
  

  
  ind ind indJ r J r G r r' J r

r

In \* MERGEFORMAT (50), we assume that the nanoscatterers are positioned on top of a multilayer 
structure (e.g., in our experiment, the layers include the SiO2 layer and the Si layer) and immersed in 
vacuum. The vacuum is characterized by the vacuum permittivity  and the vacuum permeability . 𝜀0 𝜇0
Then, the nanoscatterers occupying a volume  are assumed to be non-magnetic and are 𝑉

electromagnetically characterized by a frequency dependent permittivity . Lastly,  is the 𝜀𝑟(𝜔) 𝐺(𝑟,𝑟',𝜔)
so-called dyadic Green’s function, which links an observation point  with a source point  at a 𝑟 𝑟'

frequency . Due to the multilayer structure considered, the dyadic Green’s function has two parts, the 𝜔

direct field part,  ,and the reflected field part, . Both Green’s functions can be 𝐺0(𝑟,𝑟',𝜔) 𝐺𝑟(𝑟,𝑟',𝜔)
compactly written in the following generic form in the reciprocal space,

 \* MERGEFORMAT (51)     0/ 0/ 0/, , , , , , .s p
r r r     G r r G r r G r r

In \* MERGEFORMAT (51), the dyadic Green’s function for the direct field case and the reflected field 
case is split into two parts: the part for the s polarized waves and the part for the p polarized waves. 
Each can be further expanded in the spectral domain (or the reciprocal space),

 \* MERGEFORMAT (52)       / /
0/ 0/2, , , , , .

8
x yik x x ik y ys p s p

r r x y x y
i k k z z e dk dk


   


  G r r M

In \* MERGEFORMAT (52),  is the spectral domain representation of the corresponding dyadic Green’s 𝑀

function. It is functions of in-plane wave numbers  and  and the  coordinate of the observation 𝑘𝑥 𝑘𝑦 𝑧

point and the source point. Their detailed forms can be found in, e.g. [5], and listed here,
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In \* MERGEFORMAT (53) - \* MERGEFORMAT (56),  and  are the lateral and vertical wave numbers 𝑘𝜌 𝑘𝑧
and defined as,

 \* MERGEFORMAT (57)2 2 2 2
0,  .x y zk k k k k k    

The square root in the second equation in \* MERGEFORMAT (57) always takes a positive imaginary part 
to ensure the radiation boundary condition.

Step 2: the  operator
𝑃𝑀𝑥

Consider the  coordinate frame and especially focus on a symmetry operation in the  group, 𝑚𝑥 ‒ 𝑚𝑦 𝐷4

that is,  which mirrors a vector with respect to the  reflection axis. A representation of this 𝑀𝑥 𝑚𝑥

geometric transformation is a matrix,

 \* MERGEFORMAT (58)
1 0 0
0 1 0 .
0 0 1

xM
 
   
 
 

Besides, we accordingly introduce a transformation operator[6] corresponding to the  operation. The 𝑀𝑥

operator works on a function which can be a scalar function (e.g., an electric charge distribution) and a 
vector function (e.g., an electric field distribution) and is defined as

 \* MERGEFORMAT (59)         1 1,  .
x xM x M x xP f f M P M M   r r f r f r

In \* MERGEFORMAT (59),  represents the inverse of the transformation matrix in \* 𝑀‒ 1
𝑥

MERGEFORMAT (58). 

Step 3: Commutative relation between the  operator and the  operator
𝑃𝑀𝑥 𝑍

In this section, we prove that the  operator and the  operator are indeed commutative, that is,
𝑃𝑀𝑥 𝑍

 \* MERGEFORMAT (60)     .
x xM MP Z ZPind indJ r J r

Consider the  coordinate frame. On the one hand, we focus on the first term in \* 𝑚𝑥 ‒ 𝑚𝑦

MERGEFORMAT (50). Since the permittivity profile is invariant under the symmetry operation,

 \* MERGEFORMAT (61)      1 ,
xM r r x rP M   r r r
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applying the transformation operator to the first term in \* MERGEFORMAT (50) results in
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Therefore, the commutative relation is proved. On the other hand, we focus on the volume integral in 
the second term in \* MERGEFORMAT (50). Apply the transformation operator to the integral leads to,

 \* MERGEFORMAT (63)

    
   

   

1

1 1

, ,  '

, ,  '

, ,  '.

xM V

x xV

x x x xV

P dv

M M dv

M M M M dv









 



  

   






ind

ind

ind

G r r' J r

G r r' J r

G r r' J r

In \* MERGEFORMAT (63), it is noted that the transformation is for the observation coordinates. 
Substitute the spectral domain representation of the dyadic Green’s function in \* MERGEFORMAT (53) 
- \* MERGEFORMAT (56) into \* MERGEFORMAT (63). Especially, take the direct field dyadic Green’s 
function for the  polarized waves (i.e., \* MERGEFORMAT (53)) as an example,𝑠

 \* MERGEFORMAT (64)

   

     

1 1

2

2 1
2 2

2

2
2 2

, ,  '

0
1 0  '

8
0 0 0

0
1 0

8
0 0 0

x yz

xz

x x x xV

y x y
ik x x ik y yik z z

x x y x x y x xV
z

y x y
ik xik z z

x x y x
z

M M M M dv

k k k
iM k k k e e dk dk M M dv

k k

k k k
iM k k k e e

k k











 

     





  

  
         
  

  

 
 

   
 
 



 

ind

ind

G r r' J r

J r

     1  '.yx ik y y
x y x xV

dk dk M M dv   



 
 

  
 
 

  indJ r

In \* MERGEFORMAT (64), to reach the second equality, a change of variable  is made. Then, a 𝑘𝜌→ ‒ 𝑘𝜌

change of variable  is conducted,𝑦'→ ‒ 𝑦'



14

 \* MERGEFORMAT (65)

     

   

2

2 1
2 2

2

2 1
2 2

0
1 0  '

8
0 0 0

0
1 0

8
0 0 0

x yz

x yz

y x y
ik x x ik y yik z z

x x y x x y x xV
z

y x y
ik x x ik y yik z z

x x y x x x y x
z

k k k
iM k k k e e dk dk M M dv

k k

k k k
i M k k k e M e dk dk M

k k









    



    



  
        
  

  
  
  

     
  

  

 



indJ r

 

     

 

2

2 1 1
2 2

2

2 1
2 2

, ,  '

0
1 0  '

8
0 0 0

0
1 0

8
0 0 0

x yz

x yz

V

y x y
ik x x ik y yik z z

x x y x x x y x xV
z

y x y
ik x x ik yik z z

x x y x x
z

x y z dv

k k k
i M k k k e M e dk dk M M dv

k k

k k k
i M k k k e M e

k k









     



  

   

  
         
  

  

 
 

   
 
 



 

ind

ind

J

J r

     '.
x

y
x y MV

dk dk P dv



 
 

 
 
 

  indJ r

Lastly, it is not hard to see that

 \* MERGEFORMAT (66)

2 2

2 1 2

0 0
0 0 .

0 0 0 0 0 0

y x y y x y

x x y x x x y x

k k k k k k
M k k k M k k k

   
   
      
   
   

Therefore, we prove that

 \* MERGEFORMAT (67)         0 0, ,  ' , ,  '.
x x

s s
M MV V
P dv P dv     ind indG r r' J r G r r' J r

The same procedures can be applied to the rest cases (i.e., \* MERGEFORMAT (54) - \* MERGEFORMAT 
(56)). Finally, the commutative relation in \* MERGEFORMAT (60) is proved.

Step 4: On the Application of the Transformation Operator in \* MERGEFORMAT (59) to \* 
MERGEFORMAT (49)

First, we assume a LCP incident light, 

 \* MERGEFORMAT (68)   1 ˆ ˆ .
2

zik z
L i e x yE r m m

Mind the phase difference between the LCP in \* MERGEFORMAT (48) and \* MERGEFORMAT (68). 
Through \* MERGEFORMAT (49) we find the induced current as,

 \* MERGEFORMAT (69)    .L LZ J r E r

Consider the  coordinate frame and apply the transformation operator in \* MERGEFORMAT 𝑚𝑥 ‒ 𝑚𝑦

(59) to both sides of \* MERGEFORMAT (69),

 \* MERGEFORMAT (70)    .
x xM L M LZ P PJ r E r
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In the derivation of \* MERGEFORMAT (70), we use the commutative relation in \* MERGEFORMAT (60). 
It is not hard to see that the right hand side of \* MERGEFORMAT (70) is just the right circularly 
polarized light,

 \* MERGEFORMAT (71)         .
xM L R R RZP Z  J r E r J r E r

Therefore, we can conclude that the induced current due to the LCP can be transformed into the induced 
current due to the RCP,

 \* MERGEFORMAT (72)    .
xR M LPJ r J r

Step 4: the Scattered Field, the Poynting Vector and the Reflected Power

In practice, instead of the induced currents flowing in the nanoscatterers, we are more interested the 
scattered field generated by these currents,

 \* MERGEFORMAT (73)         0
0

1, ,  ',  .s s sV
i dv

i
 


     indE r G r r' J r H r E r

The volume integral in \* MERGEFORMAT (73) is conducted over the volume of all the nanoscatterers 
and the Green’s function is the same as the one in \* MERGEFORMAT (52) - \* MERGEFORMAT (56). 
Then, the scattered electric fields generated by the induced currents in \* MERGEFORMAT (69) and \* 
MERGEFORMAT (71) are

 \* MERGEFORMAT (74)           0 0, ,  ',  , ,  '.L L R RV V
i dv i dv          E r G r r' J r E r G r r' J r

Take into account the relation in \* MERGEFORMAT (72) and the commutative relation in \* 
MERGEFORMAT (67),

 \* MERGEFORMAT (75)    .
xR M LPE r E r

For the magnetic fields, it can be proven that

 \* MERGEFORMAT (76)    .
xR M LP H r H r

From \* MERGEFORMAT (75) and \* MERGEFORMAT (76), the  component of the Poynting vector can 𝑧

be derived,

 \* MERGEFORMAT (77)         * *
, , , , ,, , , , , , , , , , .L z L x L y L y L xS x y z E x y z H x y z E x y z H x y z 

 \* MERGEFORMAT (78)         * *
, , , , ,, , , , , , , , , , .R z L x L y L y L xS x y z E x y z H x y z E x y z H x y z     

Integrate \* MERGEFORMAT (77) and \* MERGEFORMAT (78) with respect to an infinitely large 
observation plane at  above the structure,𝑧

 \* MERGEFORMAT (79)
   

       

,

* *
, , , ,

, ,

, , , , , , , , ,

L L zS

L x L y L y L xS

P z S x y z dxdy

E x y z H x y z E x y z H x y z dxdy
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 \* MERGEFORMAT (80)

   

       

       

,

* *
, , , ,

* *
, , , ,

, ,

, , , , , , , ,

, , , , , , , , .

R R zS

L x L y L y L xS

L x L y L y L xS

P z S x y z dxdy

E x y z H x y z E x y z H x y z dxdy

E x y z H x y z E x y z H x y z dxdy









       

   





Therefore,

 \* MERGEFORMAT (81)   .L RP z P z

Eq. \* MERGEFORMAT (81) simply points out that the reflected power for the LCP and RCP incident 
cases is identical. It should be noted that \* MERGEFORMAT (79) and \* MERGEFORMAT (80) are the 
reflected power due to the incident field in \* MERGEFORMAT (68). For the incident field in \* 
MERGEFORMAT (48) (which is actually used in the experiment), there is an extra phase factor. However, 
this phase factor disappears due to the complex conjugation in \* MERGEFORMAT (79) and \* 
MERGEFORMAT (80).
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