ELECTRONIC SUPPLEMENTARY INFORMATION Niobium oxide dihalides NbOX₂: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity

Yinglu Jia,^{†,‡} Min Zhao,[†] Gaoyang Gou,^{*,†} Xiao Cheng Zeng,^{*,‡} and Ju Li^{*,¶}

†Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi' an 710049, People's Republic of China ‡Department of Chemistry and Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
¶Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

E-mail: gougaoyang@mail.xjtu.edu.cn; xzeng1@unl.edu; liju@mit.edu

Crystal structures of bulk $NbOX_2$

$PE \text{ bulk } NbOCl_2$							
a = 6.696 Å, b = 3.825Å, c = 12.569 Å, β = 104.9°							
Atom	x	y	z				
Nb $(4i)$	0.2192	0.0000	0.0001				
O(4i)	0.2297	0.0000	0.4965				
Cl (4i)	0.0844	0.0000	0.1597				
Cl (4i)	0.5696	0.0000	0.1392				
	${ m PE} \; { m bulk} \; { m NbOBr}_2$						
a = 7.018	Å, b = 3.8	834 Å, c =	13.628 Å, $\gamma = 104.1^{\circ}$				
Atom	x	y	z				
Nb $(4i)$	0.2857	0.0000	0.0004				
O(4i)	0.2768	0.0000	0.5023				
Br(4i)	0.0695	0.0000	0.1355				
Br(4i)	0.5861	0.0000	0.1584				
${ m PE} \; { m bulk} \; { m NbOI}_2$							
a = 7.526 Å, b = 3.863 Å, c = 15.053 Å, β = 103.5°							
Atom	x	y	z				
Nb $(4i)$	0.2924	0.0000	0.0006				
O(4i)	0.2864	0.0000	0.5009				
I (4i)	0.0679	0.0000	0.1298				
I (4i)	0.5859	0.0000	0.1562				

Table S1: Calculated crystallographic parameters for paraelectric (PE) NbO X_2 bulk phases with C2/m (No. 12) symmetry.

	EE bulk NbOCl							
Even la -	FE DUIK INDOCI ₂ E $105201 = 0.14$ Å							
$\mathbf{E}\mathbf{x}\mathbf{p}$: a =	Exp: $a = 6.686 \text{ A}, b = 3.920 \text{ A}, c = 12.790 \text{ A}, \beta = 105.3^{\circ}, d_{Nb} = 0.14 \text{ A}$							
- Cal: a =	Cal: a = 6.686 A, b = 3.868 A, c = 12.520 A, β = 105.0°, d_{Nb} = 0.15 A							
A .		Exp			Cal			
Atom	x	<i>y</i>	2	<i>x</i>	<u>y</u>	2		
Nb $(4c)$	0.2740	0.0360	0.0000	0.2807	0.0369	0.0003		
O(4c)	0.2530	0.5000	0.0000	0.2715	0.5048	0.0017		
Cl (4c)	0.0670	0.0000	0.1350	0.0703	-0.0069	0.1391		
Cl (4c)	0.5760	0.0000	0.1530	0.5844	-0.0008	0.1600		
	FE bulk NbOBr ₂							
Exp : ² a =	Exp: ² a = 7.023 Å, b = 3.908 Å, c = 13.795 Å, β = 104.4°, d_{Nb} = 0.19 Å							
Cal: a =	= 7.010 Å, l	p = 3.870	Å, $c = 13.59$	3 Å, $\beta = 1$	$04.1^{\circ}, d_{Nb} =$	= 0.14 Å		
		Exp^2			Cal			
Atom	x	y	z	x	y	z		
Nb $(4c)$	0.2763	0.0005	-0.0003	0.2856	0.0420	-0.0005		
O(4c)	0.2740	0.5410	0.0011	0.2780	0.5116	0.0014		
Br(4c)	0.0685	0.0535	0.1360	0.0698	0.0001	0.1353		
Br (4c)	0.5773	0.0514	0.1514	0.5860	0.0052	0.1586		
	FE bulk NbOI ₂							
Exp: ³ a =	Exp: ³ a = 7.520 Å, b = 3.924 Å, c = 15.036 Å, β = 103.3°, d_{Nb} = 0.14 Å							
Cal : a = 7.522 Å, b = 3.896 Å, c = 15.020 Å, β = 103.5°, d_{Nb} = 0.13 Å								
		Exp^{3}			Cal			
Atom	x	y	z	x	y	z		
\overline{Nb} (4c)	0.2900	0.0339	0.0005	0.2923	0.0327	0.0007		
O(4c)	0.2898	0.4964	0.0001	0.2872	0.5033	0.0009		
I(4c)	0.0682	0.0000	0.1287	0.0676	-0.0047	0.1296		
I (4c)	0.5854	0.0007	0.1549	0.5861	-0.0002	0.1565		

Table S2: Comparison between the calculated and experimentally measured crystallographic parameters for ferroelectric (FE) NbOX₂ bulk with C2 symmetry. Nb polar displacement (d_{Nb}) is measured as the displacement of Nb atom relative to the center of NbO₂X₄ octahedra along crystallographic b axis.

Antipolar bulk NbOCl ₂						
a = 6.686 Å, b = 3.867Å, c = 12.585 Å, β = 105.9°						
Atom	x	y	z			
Nb $(4g)$	0.7807	0.2153	0.2504			
O(4g)	0.7715	0.2531	0.7517			
Cl (4g)	0.5701	0.7420	0.8890			
Cl (4g)	0.0843	0.7479	-0.0901			
Antipolar bulk NbOBr ₂						
a = 7.010	Å, b = 3.8	869 Å, c = 1	13.684 Å, $\gamma = 105.6^{\circ}$			
Atom	Atom x		z			
Nb $(4g)$	0.7856	0.2129	0.2505			
O(4g)	0.7780	0.2572	0.7515			
Br(4g)	0.5694	0.7461	0.8854			
Br(4g)	0.0857	0.2486	-0.0914			
Antipolar bulk NbOI ₂						
a = 7.525 Å, b = 3.895 Å, c = 15.141 Å, β = 105.4°						
Atom	Atom x		z			
Nb $(4g)$	0.2924	0.2197	0.2507			
O(4g)	0.2873	0.2512	0.7511			
I (4g)	0.0676	0.7430	0.8795			
I (4g)	0.5869	0.7479	-0.0934			

TableS3: Calculated crystallographic parameters for antipolar NbOX₂ bulk phases with P2/c (No. 13) symmetry.

$\overline{\textbf{AFE bulk NbOCl}_2}$						
a = 3.861 Å, b = 6.574 Å, c = 6.692 Å,						
$\alpha = 105.0^{\rm o}, \beta = 91.0^{\rm o}, \gamma = 106.7^{\rm o}$						
Atom	x	y	z			
Nb $(2i)$	-0.0309	0.0007	0.7811			
O(2i)	0.4997	0.0047	0.7743			
Cl(2i)	0.8644	0.7228	0.4302			
Cl(2i)	0.8380	0.6794	-0.0851			
	AFE bulk	NbOBr	2			
a = 3.86	a = 3.863 Å, b = 7.014 Å, c = 7.109 Å,					
$\alpha = 10$	$04.8^{\circ}, \beta =$	$105.5^{\mathrm{o}}, \gamma =$	$= 90.8^{\circ}$			
Atom	x	y	z			
Nb $(2i)$	-0.0283	0.2859	0.0010			
O(2i)	0.4995	0.2798	0.0033			
Br(2i)	0.1337	0.0695	0.2701			
Br(2i)	0.1595	0.5863	0.3176			
	AFE bul	k Nb OI_2				
a = 3.891 Å, b = 7.522 Å, c = 7.813 Å,						
$\alpha = 104.7^{\circ}, \beta = 104.2^{\circ}, \gamma = 90.7^{\circ}$						
Atom	x	y	z			
Nb $(2i)$	-0.0268	0.2923	0.0013			
O(2i)	0.5002	0.2879	0.0020			
I (2i)	0.1271	0.0678	0.2592			
I (2i)	0.1569	0.5863	0.3130			

Table S4: Calculated crystallographic parameters for antiferroelectric (AFE) NbO X_2 bulk phases with $P\overline{1}$ (No. 2) symmetry.

Ferroelectric properties of $NbOX_2$ bulk and monolayer

Figure S1: Energy-polarization double well profiles for FE bulk NbOX₂. Energy evolution as a function of spontaneous polarization connecting the FE C2 and PE C2/m phases of NbOX₂ bulk. Symbols are the calculated results, and lines are fitted to the data based on Landau model. The trend in magnitude of spontaneous polarization and FE potential depth are NbOI₂ < NbOBr₂ < NbOCl₂.

Figure S2: Calculated phonon spectrum for PE NbOI₂ monolayer. There are two unstable soft-phonon modes corresponding to ferroelectric (FE) and antiferroelectric (AFE) Nb polar displacement relative to the center of NbO₂ X_4 octahedra along crystallographic *b* axis.

	$NbOCl_2$		$NbOBr_2$		$NbOI_2$	
Phonon mode	bulk	monolayer	bulk	monolayer	bulk	monolayer
FE	$i \ 127.56$	<i>i</i> 130.11	<i>i</i> 98.96	$i \ 106.35$	<i>i</i> 83.03	i 88.73
antipolar	$i \ 123.00$		$i \ 96.56$		$i \ 82.06$	
AFE	i 79.59	$i \ 85.18$	$i \ 73.57$	i 82.39	$i \ 71.15$	$i \ 81.02$

Table S5: Calculated imaginary frequencies (in cm⁻¹) for unstable polar phonon modes in PE phases of NbOX₂ bulk and monolayer.

Figure S3: Upper panel: Variation of the total energy for different polar configurations in NbOCl₂ and NbOBr₂ systems as a function of layer numbers, where the energy of the corresponding PE phases are chosen as energy zero. The energy stability trends are: FE \approx antipolar > AFE. Lower panel: Nb polar displacement-energy double well plots connecting PE and two FE phases in NbOCl₂ and NbOBr₂ monolayer, bilayer and bulk. Symbols are the calculated results, lines are fitted to the data based on Landau model. Similar to NbOI₂, both the magnitude of Nb polar displacement and spontaneous potential depth in FE NbOCl₂ and NbOBr₂ remain almost unchanged with respect to the layer numbers.

Optical absorption of bulk NbOX₂

Figure S4: Optical absorption coefficient $\alpha(\omega)$ for FE NbOX₂ bulk, calculated using HSE functional. Among the three bulk compounds, only NbOI₂ exhibits semiconducting optical absorption properties. As an indirect band gap semiconductor, NbOI₂ bulk can effectively absorbs incident light with photon energy above 2.0 eV.

Computational details for MC and MD simulations

Figure S5: Three different polar configurations used to extract the polar displacement interaction parameters C_x and C_y appeared in Table 2 of the main text. Config. 1 and 2 correspond to FE and AFE phase for NbOX₂ monolayer, Config. 3 contains head-tohead (tail-to-tail) Nb polar arrangement, which is highly unfavorable. We constrain three configurations to have same Nb polar displacement amplitude ($|d_i|=d$). So that based on Eq. (2) of main text, their energy difference can be written as: $E_2 - E_1 = 16C_x \cdot d^2$; $E_3 - E_1$ = $16C_y \cdot d^2$. The obtained parameters $C_y \gg C_x$, owing to the very high energy cost to form head-to-head (tail-to-tail) polar arrangement.

Figure S6: Full time evolution of the instantaneous temperature, total energies for $NbOI_2$ monolayer at the selected target temperature during *ab initial* MD simulations.

MC simulations:

Based on the effective Hamiltonian (Eq. (2) of main text) with parameters given in Table 2 of the main text, we perform MC simulations using the Metropolis algorithm⁴ for NbOX₂ monolayers. A periodic 2D slab composed of $60 \times 60 \times 1$ of NbOX₂ unit cells (corresponding to a supercell containing 7200 Nb lattice grids). Zero temperature FE phase is chosen as the initial state, where Nb cation from each lattice grid carries same d_i . Each MC step starts by randomly changing the magnitude of d_i with any value in the range of [-|d|, |d|]. The probability for changing the sign of d_i at a given temperature T is determined by

$$\Delta d_i = \begin{cases} exp(-\frac{\Delta E}{k_B T}), & \text{when } \Delta E > 0\\ 1, & \text{when } \Delta E > 0 \end{cases}$$
(1)

where k_B is the Boltzmann constant and ΔE is the energy difference of the system before and after changing the sign of d_i . For simulation of each configuration under different temperature and electric field, we run at least 3000 MC steps to ensure the thermal-equilibrium. And then at least 300 steady MC steps were further used to calculate the macroscopic average polar displacement $\langle d \rangle$. Ab initio MD simulations:

We also performed *ab initio* MD simulations implemented in VASP using NVT ensemble at zero pressure and a time step of 1 fs. SCAN+rVV10 functional and same plane-wave basis set, PAW method as zero temperature DFT calculations are used for MD simulations. A 4 × 8×1 periodic supercell containing 256 atoms (8×8 Nb lattice grid) was used to simulate NbOX₂ monolayers. Full time evolution of the instantaneous temperature, total energies for NbOI₂ monolayer at the selected target temperature are shown in Figure S6. We perform MD simulations up to 1.6 ps to ensure the system can reach thermal-equilibrium state. 150 configuration snap-shots around thermal-equilibrium are used for statistics.

Strain engineering of $NbOX_2$ monolayer

Figure S7: Variation of Nb polar displacement $(d_{\rm Nb})$ in FE phase, the energy for FE and AFE phases relative to PE phase (ΔE) of NbOX₂ monolayer as a function of tensile strain applied along the polar axis.

References

- (1) D. Drobot, and E. Pisarev, Russ. J. Inorg. Chem. 1984, 29, 1561–1563.
- (2) J. Beck, and C. Kusterer, Z. Anorg. Allg. Chem. 2006, 632, 2193–2194.
- (3) J. Rijnsdorp and F. Jellinek, J. Less-Common Met. 1978, 61, 79–82.
- (4) N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 1953, 21, 1087–1092.