Supporting Information

Growth of 2H Stacked WSe₂ Bilayers on Sapphire

Ali Han¹, Areej Aljarb¹, Sheng Liu², Peng Li¹, Chun Ma¹, Fei Xue¹, Sergei Lopatin³, Chih-Wen Yang¹, Jing-Kai Huang,^{1,4} Yi Wan¹, Xixiang Zhang¹, Kuo-Wei Huang¹, Qihua Xiong⁵, Vincent Tung^{1,6*}, Thomas D. Anthopoulos^{1*}, Lain-Jong Li^{1,4*}

¹Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

²Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

³King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Kingdom of Saudi Arabia

⁴School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

⁵Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371. MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore 639798. NOVITAS, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

⁶Molecular Foundry Division, Lawrence Berkeley National Lab, Berkeley 94720, USA

* E-mails: thomas.anthopoulos@kaust.edu.sa; vincent.tung@kaust.edu.sa; lance.li@kaust.edu.sa;

Figure S1. Schematic illustration of the CVD setup and the relative position between WO₃, Se and substrate. The distance between Se powder and WO₃ powder is ~25 cm.

Figure S2. Optical images for the WSe₂ growth by CVD method. The mass amount of WO₃ is 0.3g, while the amount of Se powder is increased. The high-purity of H₂/Ar is as the carrier gas with a fixed flow rate of 5/65 sccm/sccm. The T_{Se} (temperature of Se) is maintained at 250 °C while T_{WO3} (the temperature of WO₃) is kept at 895 °C. The growth pressure of the furnace is 10 torr for the whole CVD growth. The growth time is 15 mins.

Figure S3. Optical images for the WSe₂ growth by CVD method. The mass amount of WO₃ is 0.3 g. The high-purity of H₂/Ar is as the carrier gas with a fixed flow rate of 5/65 sccm/sccm. **a-b**, The amount of Se powder is 5.5 g, $T_{Se} = 250$ °C and $T_{WO_3} = 890$ °C; **c-d**, The amount of Se powder is 5.0 g, $T_{Se} = 260$ °C and $T_{WO_3} = 895$ °C; **e-f**, The amount of Se powder is 5.5 g, $T_{Se} = 250$ °C and $T_{WO_3} = 900$ °C.

Figure S4. a, Left: optical micrograph of cloud bilayer WSe₂ crystal with monolayer WSe₂ as reference; Right: The corresponding SHG mapping intensity obtained by pixel-to-pixel spatial scanning on the crystals in Fig. S4a; **b**, The SH signal spectra of different layer number; **c**, Optical micrograph of irregular bilayer WSe₂ crystal with monolayer WSe₂ as reference; **d**, The corresponding SHG mapping intensity obtained by pixel-to-pixel spatial scanning on the crystals in Fig. S4c; **e**, The SH signal spectra of different layer number.

Figure S5. Low-frequency Raman spectra of bilayer WSe₂ crystals for 2H and 3R stacking configurations with different morphologies.

Figure S6 a, Low-magnification HAADF-STEM image of top-view bilayer WSe₂ sample; b-c, elemental mapping of the region (green frame) in Fig.a.

Figure S7. a, AFM topographic image of the monolayer WSe_2 grain boundary crystal with bilayer nuclei in the center area; **b**, The zoom-in AFM topographic image of area 1, indicative of initial WSe_2 bilayer nuclei aligned growth on the atomic steps. Scale bars: a, 2 µm; b, 100 nm.

Figure S8. a-b, AFM topographic images of monolayer WSe_2 crystal with bilayer nuclei in different areas. The inset height profile is~0.8 nm, indicating a thickness of WSe_2 monolayer. The zoom-in AFM image in Fig.R1b shows WSe_2 bilayer nuclei initial growth on the atomic steps of sapphire; **c-d,** AFM topographic images of monolayer WSe_2 crystal with bilayer nuclei in different areas. The inset height profile is ~0.76 nm, indicating a thickness of WSe_2 monolayer The zoom-in AFM image in Fig. R1d shows WSe_2 bilayer nuclei initial growth on the atomic steps of sapphire.

Figure S9. a, AFM topographic image of sapphire surface after high-temperature treatment (1050 °C in H_2 /Ar for 15 mins); **b**, the corresponding cross-section height profile of the atomic steps along the vertical step direction in Fig. S7a; **c**, AFM topographic image of sapphire surface after high-temperature treatment (1050 °C in air for 60 mins); **d**, the corresponding cross-section height profile of the atomic steps along the vertical step direction in Fig. S7c. Scale bars: a, 100 nm; c, 100 nm.

Figure S10. a, AFM topographic image of one WSe₂ crystal. The inset height profile was ~0.8 nm, indicating a monolayer thickness; **b**, The zoom-in AFM image in Fig. S8a. And the image showed irregular atomic steps on bare sapphire surface without any pre-treatment. In contrast, the apparently periodic atomic steps were shown after covering monolayer WSe₂; **c**, The selected area for the roughness calculation of bare sapphire surface (300 nm x 300 nm); **d**, The selected area for the average roughness calculation of sapphire surface with monolayer WSe₂ covering (300 nm x 300 nm). Scale bars: a, 2 μ m; b, 200 nm; c, 2 μ m; d, 200 nm.

Figure S11. a, Optical micrograph of bilayer/trilayer WSe₂ crystals as-grown on c-plane sapphire substrate; **b,** The Raman spectra measurements for bilayer (red) and trilayer (orange) WSe₂ crystals.

Figure S12. AFM topographic images of three representative bilayer WSe₂ crystals as-grown on sapphire surface. a, The bilayer WSe₂ crystal with irregular morphology. The inset height profiles were both ~0.8 nm, indicating a bilayer thickness in the left part and a monolayer thickness in the right part of the WSe₂ crystal; **b**, The zoom-in AFM image showed the bilayer WSe₂ nuclei growth orientation following the atomic steps; **c**, the bilayer WSe₂ crystal with truncated triangle morphology. The inset height profile demonstrated a bilayer thickness of WSe₂ crystal; **d**, The zoom-in AFM image showed bilayer WSe₂ nuclei growth orientation following the atomic steps; **e**, The bilayer WSe₂ crystal with grain boundary. The inset height profile demonstrated a bilayer thickness of WSe₂; **f**, The zoom-in AFM image showed bilayer WSe₂ nuclei growth orientation following the atomic steps. Scale bars: a, 2 μm; b, 200 nm; c, 1 μm; d, 200 nm; e, 1 μm; f, 100 nm.

WSe ₂ crystals	Sapphire Roughness	Monolayer Roughness	Bilayer Roughness	Trilayer Roughness	Sapphire Roughness (1050 °C)1	Sapphire Roughness (1050 °C) ²
Sapphire (Fig. S7a)	-	-	-	-	0.056 nm	-
Sapphire (Fig. S7c)	-	-	-	-	-	0.060 nm
Crystal 1 (Fig. 2b)	-	0.070 nm	-	-	-	-
Crystal 2 (Fig. 2d)	0.109 nm	0.073 nm	0.068 nm	-	-	-
Crystal 3 (Fig. 3b)	0.129 nm	0.094 nm	0.097 nm	0.076 nm	-	-
Crystal 4 (Fig. S8b)	0.148 nm	0.056 nm	-	-	-	-
Crystal 5 (Fig. S10b)	0.110 nm	0.077 nm	0.082 nm	-	-	-
Crystal 6 (Fig. S10d)	0.125 nm	0.081 nm	0.073 nm	-	-	-
Crystal 7 (Fig. S10f)	-	0.075 nm	0.086 nm	-	-	-

Table S1. Roughness measurements on different surfaces

 1 The as-supplied sapphire was annealed in the H₂/Ar for 15 mins;

²The as-supplied sapphire was annealed in the air for 60 mins.

Figure S13. a. The Raman spectra measurements for WSe_2 monolayer and bilayer crystals before and after device fabrication on c-plane sapphire substrate; **b**, The PL spectra measurements for WSe_2 monolayer and bilayer crystals before and after device fabrication on c-plane sapphire substrate.

Figure S14. a, I_{ds} as a function of V_g for monolayer device with two terminal. I_{ds} as a function of V_g for bilayer device with two terminal; **b,** I_{ds} as a function of V_g for monolayer device. I_{ds} as a function of V_g for bilayer device. $C_g = 5.0 \,\mu\text{F/cm}^2$; **c,** I_{ds} as a function of V_{gs} for monolayer/bilayer device. The subthreshold slopes of monolayer and bilayer crystals were measured to be 229 and 201 mV/dec, respectively.