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Table S1. The average number (n) of Rh atomic layers calculated from the ICP−MS data for 

the Pd and Rh contents in the Pd@Rh core-shell nanocrystals, the weight percentage (wt%) of 

Rh obtained from the ICP−MS data, and the wt% of Rh derived from the average number of 

Rh atomic layers and the size of the Pd seeds such as octahedra and cubes.

Samples

Average number of 

Rh atomic layers 

(n)

wt% of Rh 

obtained from the 

ICP−MS data

wt% of Rh 

calculated from 

the value of n

Pd@Rh 

octahedra
2.1 42.2 39.8 (n=2)

Pd@Rh 

cubes
2.9 36.6 37.8 (n=3)
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Fig. S1 TEM images of (A) Pd octahedra and (B) Pd cubes with average edge lengths of 6.4 

and 7.2 nm, respectively, which served as seeds for the overgrowth of Rh.
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Fig. S2 TEM image of Pd@Rh core-shell octahedra at a relatively low magnification to show 

uniformity in both size and shape.
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Fig. S3 TEM image of a product containing both Pd@Rh core-shell octahedra and small Rh 

nanocrystals when a larger volume (81 μL) of Rh(OAc)3 solution was used while all other 

conditions were kept the same as the standard protocol. 
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Fig. S4 TEM images of Pd@Rh core-shell octahedra prepared using different Rh precursors, 

including (A) RhCl3, (B) Rh(NO3)3, and (C, D) Rh(acac)3, respectively, using a protocol similar 

to what was used for the Pd@Rh octahedra shown in Fig. 1. 
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Fig. S5 TEM images of (A) Pd cubes and (B) Pd cuboctahedra. TEM images of Pd@Rh 

octahedra grown from the (C) cubic and (D) cuboctahedral, respectively, seeds of Pd, with a 

protocol similar to what was used for the Pd@Rh octahedra shown in Fig. 1.



8

Fig. S6 Arrhenius plots for determining the ignition temperatures (ITs) of CO oxidation for 

(A) octahedral Pd@Rh/SBA15, (B) cubic Pd@Rh/SBA15 (C) cubic Rh/SBA15, and (D) Rh/C. 

The trend line analysis displays percentage conversion as a function of the reciprocal of 

temperature in Kelvin. (E) IT of CO oxidation for Pt/Al2O3 catalysts, which was supposed to 

be at 160 oC.
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Fig. S7 TEM and high-resolution TEM images of (A, B) Pd@Rh/SBA15 octahedra and (C, D) 

Pd@Rh/SBA15 cubes after going through the catalytic CO oxidation reaction.


