Electronic Supplementary Information for

## Pd@Rh Core-Shell Nanocrystals with Well-Defined Facets and Their Enhanced Catalytic Performance towards CO Oxidation

Sang-Il Choi,<sup>ab</sup> Allison Young,<sup>c</sup> Sujin R. Lee,<sup>d</sup> Cheng Ma,<sup>e</sup> Ming Luo,<sup>a</sup> Miaofang Chi,<sup>e</sup> Chia-Kuang Tsung<sup>\*c</sup> and Younan Xia<sup>\*adf</sup>

<sup>a</sup>The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States

<sup>b</sup>Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.

<sup>c</sup>Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

<sup>d</sup>School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

<sup>e</sup>Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States

<sup>f</sup>School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

\*Corresponding authors: frank.tsung@bc.edu (C.K.T. for CO oxidation measurements); younan.xia@bme.gatech.edu (Y.X. for synthesis and characterization) **Table S1.** The average number (n) of Rh atomic layers calculated from the ICP–MS data for the Pd and Rh contents in the Pd@Rh core-shell nanocrystals, the weight percentage (wt%) of Rh obtained from the ICP–MS data, and the wt% of Rh derived from the average number of Rh atomic layers and the size of the Pd seeds such as octahedra and cubes.

| Samples            | Average number of<br>Rh atomic layers<br>(n) | wt% of Rh<br>obtained from the<br>ICP–MS data | wt% of Rh<br>calculated from<br>the value of n |
|--------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Pd@Rh<br>octahedra | 2.1                                          | 42.2                                          | 39.8 (n=2)                                     |
| Pd@Rh<br>cubes     | 2.9                                          | 36.6                                          | 37.8 (n=3)                                     |



**Fig. S1** TEM images of (A) Pd octahedra and (B) Pd cubes with average edge lengths of 6.4 and 7.2 nm, respectively, which served as seeds for the overgrowth of Rh.



**Fig. S2** TEM image of Pd@Rh core-shell octahedra at a relatively low magnification to show uniformity in both size and shape.



Fig. S3 TEM image of a product containing both Pd@Rh core-shell octahedra and small Rh nanocrystals when a larger volume (81  $\mu$ L) of Rh(OAc)<sub>3</sub> solution was used while all other conditions were kept the same as the standard protocol.



**Fig. S4** TEM images of Pd@Rh core-shell octahedra prepared using different Rh precursors, including (A) RhCl<sub>3</sub>, (B) Rh(NO<sub>3</sub>)<sub>3</sub>, and (C, D) Rh(acac)<sub>3</sub>, respectively, using a protocol similar to what was used for the Pd@Rh octahedra shown in Fig. 1.



**—** 10 nm

**Fig. S5** TEM images of (A) Pd cubes and (B) Pd cuboctahedra. TEM images of Pd@Rh octahedra grown from the (C) cubic and (D) cuboctahedral, respectively, seeds of Pd, with a protocol similar to what was used for the Pd@Rh octahedra shown in Fig. 1.



**Fig. S6** Arrhenius plots for determining the ignition temperatures (ITs) of CO oxidation for (A) octahedral Pd@Rh/SBA15, (B) cubic Pd@Rh/SBA15 (C) cubic Rh/SBA15, and (D) Rh/C. The trend line analysis displays percentage conversion as a function of the reciprocal of temperature in Kelvin. (E) IT of CO oxidation for Pt/Al<sub>2</sub>O<sub>3</sub> catalysts, which was supposed to be at 160 °C.



**Fig. S7** TEM and high-resolution TEM images of (A, B) Pd@Rh/SBA15 octahedra and (C, D) Pd@Rh/SBA15 cubes after going through the catalytic CO oxidation reaction.