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Fig. S1 (a, b) SEM and (c, d) TEM images of TAB/C precursor. 

Fig. S2 HRTEM images of TAB. 
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Fig. S3 (a, b) SEM and (c, d) TEM images of TA nanoparticles. 

Fig. S4 XRD pattern of TAB/C precursor.
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Fig. S5 (a) Raman spectra and (b) TGA curves of TAB/C and TAB.

Fig. S6 CV curves at 0.1 mV s-1 of (a) TA and (b) TAB for LIBs; galvanostatic 

charge/discharge (GCD) curves of (c) TA and (d) TAB for LIBs, where the label 1 C-

r represents the result when the current density reverts from 20 C to 1 C.
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Fig. S7 Kinetics analysis for LIBs: CV curves at different scan rates of (a) TAB and 

(b) TA; log(i)-log(v) plots of CV curves to determine b-values of (c) TAB and (d) TA; 

i(v)/v1/2 vs. v1/2 at different potentials during charge/discharge cycles of (e) TAB/C 

and (f) TAB; (g) capacitive contribution (blue region) of TAB at 0.8 mV s-1; (h) EIS 
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spectra of the TAB/C, TAB and TA electrodes after 1000 cycles at 10 C, inserts are 

the equivalent circuit model and the enlarged view of EIS.

Fig. S8 EIS spectra of the TAB/C, TAB and TA electrodes in (a) LIBs and (b) SIBs 

before cycles, inserts are the equivalent circuit models.

Fig. S9 (a) GITT profiles for LIBs; DLi+ as a function of (b) discharge capacity and (c) 

charge capacity for LIBs.
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Fig. S10 Energy densities and energy efficiencies of the TAB/C, TAB and TA 

electrodes for LIBs during rate (a) and cycle (b) tests. 

Fig. S11 CV curves at 0.1 mV s-1 of (a) TAB and (b) TA for SIBs; GCD curves of (c) 

TAB and (d) TA for SIBs, where the label 1 C-r represents the result when the current 

density reverts from 20C to 1 C.



8

Fig. S12 (a) GITT profiles for SIBs; DNa+ as a function of (b) discharge capacity and 

(c) charge capacity for SIBs.
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Fig. S13 Kinetics analysis of SIBs: CV curves at different scan rates of (a) TAB and 

(b) TA; log(i)-log(v) plots of CV curves to determine b-values of (c) TAB and (d) TA; 

i(v)/v1/2 vs. v1/2 at different potentials during charge/discharge cycles for (e) TAB/C, (f) 

TAB and (g) TA; capacitive contributions (blue region) of (h) TAB and (i) TA at 0.5 

mV s-1.
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Fig. S14 Capacity contributions from diffusion-controlled and capacitive behaviors of 

the TA electrode at different scan rates for SIBs. 

Fig. S15 Energy densities and energy efficiencies of the TAB/C, TAB and TA 

electrodes for SIBs during rate (a) and cycle (b) tests.
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Fig. S16 Formation mechanism and direction of the internal electric field when the 

heterostructure is formed from the anatase and TiO2(B) phases: (a) before and (b) 

after formation.
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Table S1 Surface area and pore volume of TAB/C and TAB.

Electrode materials Surface area (m2 g-1) Pore volume (cm3 g-1)

TAB/C 125 0.55

TAB 95 0.45

Table S2 Impedance parameters of the TAB/C, TAB and TA electrodes before and 

after 1000 cycles for LIBs and SIBs. 

Fresh 

electrodes

Electrodes after 

cycles
Battery 

systems

Electrode 

materials
Rs/Ω Rct/Ω Rs/Ω Rct/Ω

TAB/C 4.1 170.4 12.9 24.2

TAB 2.2 182.9 9.0 28.5LIBs

TA 5.5 368.6 8.5 111.8

TAB/C 4.0 785.1 6.6 129.9

TAB 3.9 955.0 3.3 308.5SIBs

TA 4.5 1372.0 13.2 334.5
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Table S3 Electrochemical performance of state-of-the-art TiO2-based anode materials for LIBs and SIBs.

Materials Battery system Cyclic performance a Rate performance a Reference

TAB/C 212 mAh g-1 after 1000 cycles at 10 C 193 mAh g-1 at 20 C This work

AB550 190 mAh g-1 after 1000 cycles at 10 C 150 mAh g-1 at 20 C 41

TiO2(AB)-2 103 mAh g-1 after 1000 cycles at 10 C 80 mAh g-1 at 20 C 6

TAB Nanowires - 160 mAh g-1 at 20 C 58

TAB300 210 mAh g-1 after 60 cycles at 2 C 110 mAh g-1 at 20 C 40

TiO2(B)-HTs 160 mAh g-1 after 400 cycles at 10 C 160 mAh g-1 at 20 C 35

TiO2-x/CNT ~160 mAh g-1 after 1000 cycles at 6 C 155 mAh g-1 at 12 C 33

TiO2/RGO 130 mAh g-1 after 1000 cycles at 10 C 152 mAh g-1 at 10 C 12

H-TiO2@C b 126 mAh g-1 after 200 cycles at 6 C 50 mAh g-1 at 10 C 29

TiO2-x/GQDs

LIBs

168 mAh g-1 after 100 cycles at 10 C 155 mAh g-1 at 20 C 27

Hollow TiO2 195 mAh g-1 after 600 cycles at 0.6 C 196 mAh g-1 at 6 C 25

TAB/C 173 mAh g-1 after 1000 cycles at 5 C
112 mAh g-1 at 20 C

144 mAh g-1 at 10 C
This work

TAB300 b 80 mAh g-1 after 30 cycles at 0.2 C - 40

TiO2(B) belts b 211 mAh g-1 after 500 cycles at 1 C 106 mAh g-1 at 20 C 38
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TiO2(B) wires 150 mAh g-1 after 50 cycles at 0.12 C 82.3 mAh g-1 at 1.2 C S1

TiO2-x/CNT ~140 mAh g-1 after 1000 cycles at 6 C 118 mAh g-1 at 12 C 33

TiO2 nanotubes 126 mAh g-1 after 100 cycles at 1 C 129 mAh g-1 at 10 C 52

C coupled TiO2 100 mAh g-1 after 2000 cycles at 20 C 111 mAh g-1 at 20 C 20

TiO2/NC b 137 mAh g-1 after 1000 cycles at 10 C 104 mAh g-1 at 20 C 23

TiO2@CNTs/CFP b

SIBs

179 mAh g-1 after 400 cycles at 12 C 129 mAh g-1 at 12 C 24

TiO2@NFG 146 mAh g-1 after 8000 cycles at 10 C 129 mAh g-1 at 20 C 3

a 1 C=168 mAh g-1.

b Data obtained in the potential range of 0.05 – 3.0 V.
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