Supporting information

A comprehensive study on the effects of gamma radiation on the physical properties of two-dimensional WS₂ monolayer semiconductor

Jorlandio F. Felix^{a*}, Arlon F da Silva^a, Sebastião W da Silva^a, Fanyao Qu^a, Bin Qiu^b, Junfeng Ren^b, Walter M de Azevedo^c, Mohamed Henini^d, and Chung-Che Huang^{e*}

- a. Institute of Physics, Nucleus of Applied Physics, University of Brasília, Brasília-DF 70919-970, Brazil. E-mail: Jorlandio@unb.br
- b. School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
- c. Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, 50670-901, Brazil.
- d. School of Physics and Astronomy, University of Nottingham , Nottingham NG7 2RD,UK.
- *e.* Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK. E-mail: <u>cch@orc.soton.ac.uk</u>

Fig. S1 PL spectra at different temperatures as a function of irradiation dose and their respective peak deconvolution. (a) Non-radiated (NI) sample, and radiated samples (b) 100 Gys, (c) 200 Gys, (d) 400 Gys.

Fig. S2 XPS spectrum of the Non-irradiated (NI) and irradiated samples, all showing two and three peaks for the S2p and W4f core levels, respectively, as reported previously for 2D-WS₂. The solid lines represent their respective peak deconvolution.

Fig. S3 XCOM plots showing the γ -ray scattering mechanisms in MoS₂ and WS₂ as a function of radiation energies. The average energy for the Co⁶⁰ γ –rays, which is around 1.33 MeV is also shown as a reference.

The following figures show the schematic crystal structures of a perfect WS_2 monolayer (Fig. S4) and defective one with V_{1W+2S} vacancies composed of one tungsten and a pair of its nearby sulfurs (Fig.S5), which were used in the DFT calculations.

Fig. S4 Side (a) and top (b) views of perfect WS₂ monolayer. The gray and yellow spheres represent W and S atoms, respectively. The letters W, S-A, S-B,..., and S-E label W atom and its five neighbor S atoms.

Fig. S5 WS₂ monolayer with V_{1W+2S} vacancy complex, consisting of one W vacancy (red sphere) and nearby one sulfur vacancy pair (green spheres) in upper and lower layers at A site. The gray and yellow spheres represent W and S atoms, respectively. Total magnetic moment is equal to 2.0 µB.

Fig. S6 V_{1W+2S} vacancy complex consisting of W, S-A_{up} and S-B_{up} vacancies with $M_{tot}=0 \ \mu B$.

Fig. S7 V_{1W+2S} vacancy complex consisting of W, S-A_{up} and S-B_{down} vacancies with M_{tot} =0 μ B.

Fig. S8 V_{1W+2S} vacancy complex consisting of W, S-D $_{up}$ and S-D $_{down}$ vacancies with $~M_{tot}$ =0 $\mu B.$

Fig. S9 V_{1W+2S} vacancy complex consisting of W, S-D_{up} and S-E_{up} vacancies with $~M_{tot}{=}0~\mu\text{B}.$

Fig. S9 V_{1W+2S} vacancy complex consisting of W, S-D_{up} and S-E_{down} vacancies with $~M_{tot}{=}0~\mu B.$

Fig. S10 V_{1W+2S} vacancy complex consisting of W, S-A_{up} and S-D_{up} vacancies with $~M_{tot}\mbox{=}0~\mu\mbox{B}.$

Fig. S11 V_{1W+2S} vacancy complex consisting of W, S-A_{up} and S-D_{down} vacancies with $~M_{tot}{=}0~\mu\text{B}.$

Fig. S12 V_{1W+2S} vacancy complex consisting of W, S-C_{up} and S-D_{up} vacancies with M_{tot} =0 μ B.

Fig. S13 V_{1W+2S} vacancy complex consisting of W, S-C_{down} and S-D_up vacancies with $~M_{tot}{=}0~\mu B.$