SUPPLEMENTARY INFORMATION

Complete determination of crystallographic orientation of ReX₂ (X=S, Se) by polarized Raman spectroscopy

Yun Choi,^a Keunui Kim,^a Soo Yeon Lim,^a Jungcheol Kim,^a Je Myoung Park,^a Jung Hwa Kim,^b Zonghoon Lee,^{b,c} and Hyeonsik Cheong^{*,a}

a. Department of Physics, Sogang University, Seoul 04107, Korea.

^{b.} School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.

^{c.} Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Korea.

Corresponding Authors: *E-mail: hcheong@sogang.ac.kr

Contents:

● Figure S1. Raman spectra of 1L ReS₂ and ReSe₂ measured with three excitation energies.

• Table S1. Measured Raman peak positions of 18 vibrational modes of 1L ReS₂ and ReSe₂.

● Figure S2. Polarization dependences of 18 Raman modes of '*c*-up type' monolayer ReS₂ and ReSe₂

● Figure S3. Polarization dependence of modes 1 to 5 of '*c*-up' type few-layer ReS₂ and ReSe₂.

• Figure S4. Polarization dependence of modes 1 to 5 of ' \overline{c} -up' type few-layer ReS₂ and ReSe₂.

● Figure S5. Polarization dependence of free-standing 1L ReS₂ sample.

● Figure S6. Effect of strain on polarization dependences of modes 3 and 5 of 1L ReS₂.

● Figure S7. Polarization dependences of modes 3 and 5 from 1L to 3L ReS₂ on hBN.

References

Fig. S1 Raman spectra of 1L ReS₂ and ReSe₂ measured with three excitation energies in the parallel-polarization configuration. The polarization angle of 20° with respect to the *b*-axis was chosen to show all 18 Raman modes: (a) ReS₂ and (b) ReSe₂.

	ReS ₂	Re <mark>Se</mark> 2
mode	peak position (cm ⁻¹)	peak position (cm ⁻¹)
1	133	108
2	141	118
3	151	119
4	160	124
5	212	161
6	236	175
7	275	178
8	283	181
9	305	193
10	308	197
11	319	209
12	324	220
13	347	233
14	369	242
15	376	250
16	408	264
17	418	287
18	436	296

Table S1 Measured Raman peak positions of 18 vibrational modes of 1L ReS2 and ReSe2.

Fig. S2 Polarization dependences of 18 Raman modes of 'c-up' type monolayer ReS₂ and ReSe₂ measured with three different excitation energies as indicated.

Fig. S3 Polarization dependence of modes 1 to 5 of 'c-up' type few-layer ReS₂ and ReSe₂.

Fig. S4 Polarization dependence of modes 1 to 5 of ' \bar{c} -up' type few-layer ReS₂ and ReSe₂.

Fig. S5 Polarization dependence of free-standing 1L ReS₂ sample. (a) Optical image of free-standing 1L ReS₂ sample. The measured spots are indicated by red dots. (b, c) Polarization dependences of 1L ReS₂ sample measured with the 1.96-eV laser. (d, e) Polarization dependences of 1L ReS₂ sample measured with the 2.41-eV laser. (b, d) sample on substrate (supported) (c, e) free-standing (supported) The polarization dependences of modes 3 and 5 show no difference between the supported and the suspended parts.

Fig. S6 Effect of strain on polarization dependences of modes 3 and 5 of 1L ReS₂. (a) Optical image of the sample on acrylic substrate. (b) Schematic of strain estimation.¹ (c, d) polarization dependences of modes 3 and 5 for (c) unstrained and (d) 1.2%-strained sample. The uniaxial strain direction is taken as 0°.

Fig. S7 Polarization dependences of modes 3 and 5 from 1L to 3L ReS₂ on hBN.

References

1. F P Beer, E R Johnston, J T Dewolf and D F Mazurek, Mechanics of Materials, McGraw Hill, 2012.