Supporting Information

Ultrafine Pt Cluster and RuO₂ Heterojunction Anode Catalysts Designed for Ultra-low Pt-Loading Anion Exchange Membrane Fuel Cells

Rongyue Wang^{1,⊥}, Dongguo Li^{2,⊥}, Sandip Maurya^{2,⊥}, Yu Seung Kim,^{2,*} Yimin Wu³, Yuzi Liu³, Dusan Strmcnik⁴, Nenad Markovic⁴, Vojislav Stamenkovic^{4,*}

¹ Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

² MPA-11: Materials Synthesis and Integrated Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

³ Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

⁴ Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Table S1. 5-	vear (201	.3-2019) av	erage base	metal price.
	,		0.000000	

Metal	Price (\$/g)	Metal	Price (\$/g)
Pt	32.7	Ni	0.013
Pd	27.2	Мо	0.028
Ru	3.4	W	0.1
Ir	26.5	Cu	0.007

Figure S1. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in dibenzyl ether with oleylamine/oleic acid (0.5 mL each) as surfactants and 1,2-tetradecanediol (84 mg) as reducing agent.

Figure S2. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in dibenzyl ether oleylamine/oleic acid (0.5 mL each) as surfactants and without 1,2-tetradecanediol.

Figure S3. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in diphenyl ether with oleylamine (0.5 mL) as surfactant and 1,2-tetradecanediol (84 mg) as reducing agent.

Figure S4. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in diphenyl ether with oleylamine (2 mL) as surfactant and 1,2-tetradecanediol (84 mg) as reducing agent.

Figure S5. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in diphenyl ether with oleylamine (2 mL) as surfactant and 1,2-tetradecanediol (84 mg) as reducing agent (Confirmed reproducibility of Figure S4).

Figure S6. TEM images of 6 times scale-up PtRu nanoparticles (a, b) and after loading on carbon (c) with corresponding EDX spectroscopy (d).

Figure S7. TEM images of 6 times scale-up PtRu nanoparticles (a, b), and after loading on carbon (c) with corresponding EDX spectroscopy (d). (reproducibility of Figure S8).

Figure S8. TEM images and EDX spectroscopy of PtRu nanoparticles synthesized in diphenyl ether with one-pot synthesis.

Figure S9. TEM images of scale-up Pt-RuO₂ nanoparticles supported on high surface area carbon and corresponding XRD pattern (RuO₂ standard PDF#01-071-4825, Pt standard PDF#01-087-0647).

Figure S10. The kinetic performance of Pt/C and Pt-RuO₂/C anode catalyzed MEAs in terms of *iR* corrected polarization curves at 80 °C with humidified H₂ (2000 sccm) and O₂ (1000 sccm) at 285 kPa backpressure. Cathode: Pt/C ($0.6 \text{ mg}_{Pt}/\text{cm}^2$).

Figure S11. Effect of Pt loading at anode on AEMFC performance. Anode catalyst: JM HiSPEC 12100 PtRu/C, Cathode: JM HiSPEC 9100 Pt/C ($0.6 \text{ mg}_{Pt}/\text{cm}^2$). Fuel cells performances were obtained at 80 °C with fully humidified 2000 sccm H₂ and 1000 sccm O₂ at 285 kPa backpressure.

Figure S12. Effect of flow rate on AEMFC performance (a) Pt-RuO₂/C anode catalyzed MEA (b) JM HiSPEC 12100 Pt-Ru/C anode (0.5 mg_{Pt} /cm²) catalyzed MEA at 80 °C and 285 kPa backpressure under fully humidified gas feed.

Figure S13. AEMFC performance in H_2/CO_2 -free air with Pt-RuO₂/C as an anode and Pt/C as a cathode. Fuel cells performances were obtained with fully humidified 2000 sccm H_2 and 1000 sccm CO_2 -free air at 285 kPa backpressure.

Figure S14. Cell voltage change during MEA life test at 80 °C, RH: 100%, flow rate: 1400 sccm H₂/300 sccm O₂, backpressure: 10 psig. MEA1: Pt/C anode (0.6 mg_{Pt} cm⁻²) and Pt/C cathode (0.6 mg Pt cm⁻²). MEA2: Pt-RuO₂/C anode (0.6 mg_{Pt} cm⁻²) and Pt/C cathode (0.6 mg_{Pt} cm⁻²). Membrane: TPN (35 μ m thick), Ionomer: FLN.

Figure S15. Particle morphology change after 550-h hour MEA durability test at a constant voltage of 0.6 A cm⁻² at 80 °C; (a) Pt-Ru/C (anode) BOL (b) Pt-Ru/C (anode) EOL (c) Pt/C (cathode) BOL (d) Pt/C (cathode) EOL.

This figure is provided as an example of other MEA component degradation during the life test. The TEM images of PtRu/C anode catalyst and Pt/C after 550 h life test. The particle agglomeration is significant for Pt/C cathode, but we did not observe substantial particle size change for PtRu/C anode catalyst. These results suggest that anode catalyst degradation may be challenging to assess from MEA durability test.