Supporting Information

Defect Engineering of 2D BiOCl Nanosheets for Photonic Tumor

Ablation

Chen Dai†^a, Ruizhi Hu†^{a,c}, Chunmei Wang†^d, Zhuang Liu^e, Shengjian Zhang^e, Luodan Yu^b, Yu Chen*^b and Bo Zhang*^a

^aDepartment of Ultrasound, Shanghai East Hospital, Tongji University, Shanghai, 200120, People's Republic

of China.Email: <u>zhangbo2016@tongji.edu.cn</u>

^bState Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of

Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.Email:

chenyu@mail.sic.ac.cn

^cDepartment of Ultrasound, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's

Republic of China.

^dDepartment of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China.

^eDepartment of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.

Calculation of the Extinction Coefficient and Photothermal-Conversion Efficiency.

a. Calculation of the Extinction Coefficient

According to the Lambert-Beer Law, the extinction coefficient $\varepsilon(\lambda)$ of O-BiOCl-PVP nanosheets is obtained:

$$A(\lambda) = \varepsilon LC \tag{1}$$

Where *A* means the absorbance at a wavelength λ (808 nm), ε means the extinction coefficient, L means pathlength (1 cm) and *C* means the molar concentration of O-BiOCl-PVP nanosheets (in g L⁻¹). The extinction coefficient ε can be acquired by plotting the slope (in Lg⁻¹ cm⁻¹) of each linear fit against wavelength. The 808 nm laser extinction coefficient (ε) of OB-1, OB-2 and OB-3 nanosheets can be obtained to be 6.02, 6.64 and 6.93 Lg⁻¹ cm⁻¹, respectively.

b. Calculation of the Photothermal Conversion Efficiency

Based on previous study^[1], the photothermal conversion efficiency (η) of O-BiOCl-PVP nanosheets at 808 nm laser irradiation can be measured according to the following equation:

$$\eta = \frac{hS(T_M - T_S) - Q_D}{I(1 - 10^{-A_\lambda})}$$
(2)

where *h* is a heat-transfer coefficient, *S* represents the surface area of the cell, T_M means the maximum equilibrium temperature after laser irradiation until no thermal transmission away from the system, T_S means the surrounding temperature, Q_D represents the lost energy from light absorbed by the cell and is determined independently to be $Q_D = (5.4 \times 10^{-4})I$ (in mW) by using a sample cell containing pure water without O-BiOCI-PVP nanosheets, *I* means incident laser power (in unit of mW), A_λ means the absorbance of the O-BiOCI-PVP nanosheets at wavelength of 808 nm, In order to acquire *hS*, a dimensionless driving force temperature θ and a sample system time constant τ_s need to be introduced as the following equations,

$$\theta = \frac{T - T_S}{T_M - T_S}$$
(3)

Where T means the temperature of system surface.

$$\tau_{s} = \frac{\sum_{i} m_{i} C_{p,i}}{hS}$$
(4)

Where *m* means the mass of solvent (0.1 g) and *C* represents heat capacity of solvent (4.2 J g^{-1}).

$$\tau_s = -\frac{t}{\ln\theta} \tag{5}$$

According to the linear curve fitting of temperature cooling period in **Figure 4b-d**, τ_s of OB-1, OB-2 and OB-3 nanosheets were measured to be 216.97, 208.76 and 194.32, respectively. Therefore, *hS* of OB-1, OB-2 and OB-3 nanosheets were measured to be 1.94, 2.01 and 2.16 mW °C⁻¹, respectively. Finally, the photothermal convention efficiency (η) of OB-1, OB-2 and OB-3 nanosheets can be measured to be 5.5%, 11.5% and 13.9%, respectively.

Supplementary figures

Figure S1. TEM image of BiOCl nanosheets.

Figure S2. X-ray energy dispersive spectroscopy (EDS) of O-BiOCl nanosheets.

Magnetic field (G)

Figure S3. ESR spectra of ${}^{1}O_{2}$ trapped by TEMP in the presence of BiOCl and O-BiOCl nanosheets after NIR laser irradiation (2.0 W cm⁻² for 300 s).

Figure S4. (a) Electron density (ED), (b) electron density difference (EDD) and (c) electron localized function (ELF) of BiOCl.

Figure S5. (a-d) Calculated band structure of BiOCl nanosheets with different oxygen-vacancy substitution ratios of 0, 0.125, 0.25 and 0.5. (e-h) Density of states (DOS) of BiOCl nanosheets with different oxygen-vacancy substitution ratios of 0, 0.125, 0.25 and 0.5.

Figure S6. (a) X-ray photoelectron spectroscopy (XPS) of BiOCl and O-BiOCl nanosheets. XPS of BiOCl and O-BiOCl nanosheets in (b) Bi 4f region and (c) O 1s region.

Figure S7. Digital images of BiOCl nanosheets aqueous solutions after the exposure to UV irradiation with extended treatment time durations (2, 6 and 12 h).

Figure S8. (a, b, c) UV-vis spectra of O-BiOCl nanosheets dispersed in aqueous solution at elevated concentrations (25, 50, 100 and 200 ppm). Inset: Normalized absorbance intensity at $\lambda = 808$ nm divided by the characteristic length of the cell (A/L) at elevated concentrations (25, 50, 100 and 200 ppm).

Figure S9. FTIR spectra of PVP, O-BiOCl nanosheets and O-BiOCl-PVP nanosheets.

Figure S10. Zeta potential of O-BiOCl and O-BiOCl-PVP nanosheets dispersed in deionized water. n = 3, mean \pm s.d.

Figure S11. Relative viabilities of 4T1 cells after incubation with O-BiOCl-PVP nanosheets at different Bi concentrations (0, 30, 60, 120 and 240 μ g mL⁻¹) followed by NIR laser irradiation at the power density of 2.0 W cm⁻².

Figure S12. Digital images of tumors from control group, O-BiOCl-PVP group, NIR laser group, and O-BiOCl-PVP + NIR laser group at two weeks after different treatments.

Figure S13. TUNEL staining in tumor tissues from each group after varied treatments. All the scale bars are 50 μ m.

Figure S14. Time-dependent body-weight curves of Kunming mice during one-month period feeding after varied treatments.

Figure S15. Hematological assay of mice from the untreated control group, O-BiOCl-PVP nanosheets (10 mg kg⁻¹) treated group and O-BiOCl nanosheets (20 mg kg⁻¹) treated group after one month of intravenous administration.

Figure S16. H&E-stained tissue sections of major organs (heart, liver, spleen, lung and kidney) from mice after one month of intravenous injection with saline, 10 mg kg⁻¹ of O-BiOCl-PVP nanosheets and 20 mg kg⁻¹ of O-BiOCl-PVP nanosheets. All the scale bars are 100 µm.

Reference

[1] D. K. Roper, W. Ahn, M. Hoepfner, J. Phys. Chem. C 2007, 111, 3636.