Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

NiO nanowires as hole-transfer layer for drastic enhancement of CdSe-sensitized photocathodes

Shuang Zhao, Yuming Dong*, Guangli Wang, Pingping Jiang, Yuxia Zhang, Hongyan

Miao and Xiuming Wu

International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

Figure S1. Photocurrent responses to on-off illumination of CdSe/NiO/FTO and CdSe/NiO/NF in air-saturated buffer solution (pH 6) at -0.222 V vs. Ag/AgCl. The NiO/NF(FTO) was prepared with 0.056 M Ni(NO₃)₂ and 0.112 M CO(NH₂)₂ precursor solution, and the SILAR cycle of CdSe was 6.

Figure S2. SEM images of (a) NiO-1/NF (b) NiO-2/NF(c) NiO-3/NF (d) NiO-4/NF (f) NiO-5/NF. (e) is the enlargement of (f). The NiO/NF prepared with 0.014 M Ni(NO₃)₂ and 0.028 M CO(NH₂)₂ precursor solution were signed as NiO-1/NF, and the electrode was signed as NiO-2/NF, NiO-3/NF, NiO-4/NF and NiO-5/NF when the concentrations of precursor solution is 2, 4, 6, 10 times of NiO-1/NF.)

Figure S3. Photocurrent responses to on-off illumination of CdSe/NiO/NF in air-saturated buffer solution (pH 6) at -0.222 V vs. Ag/AgCl. (The NiO/NF prepared with 0.014 M Ni(NO₃)₂ and 0.028 M CO(NH₂)₂ precursor solution were signed as NiO-1/NF, and the electrode was signed as NiO-2/NF, NiO-3/NF, NiO-4/NF and NiO-5/NF when the concentrations of precursor solution is 2, 4, 6, 10 times of NiO-1/NF, and the SILAR cycle of CdSe was 6).

Figure S4. (a) Photocurrent responses to on-off illumination of CdSe/NiO/NF with different CdSe-SILAR cycle numbers (4-8) in air-saturated buffer solution (pH 6) at -0.222 V vs. Ag/AgCl. (b) Nyquist plots of CdSe/NiO/NF with different CdSe-SILAR cycle numbers (6-8) in nitrogen-saturated buffer solution (pH 6) with an equivalent circuit model in the inset. (The NiO/NF was prepared with 0.056 M Ni(NO₃)₂ and 0.112 M CO(NH₂)₂ precursor solution.)

Figure S5. XRD patterns of NiO/NF and CdSe/NiO/NF photocathode. (The NiO/NF was prepared with 0.056 M Ni(NO₃)₂ and 0.112 M CO(NH)₂ precursor solution, and the SILAR cycle of CdSe was 6.)

Sample	Ni(NO ₃) ₂ ·6H ₂ O	$CO(NH)_2$	SILAR cycles	Rct	CPE
	(M)	(M)	of CdSe	(Ω)	(µF)
CdSe-6/NiO/NF	0.056	0.112	6	49.05	10.64
CdSe-7/NiO/NF	0.056	0.112	7	61.94	6.11
CdSe-8/NiO/NF	0.056	0.112	8	98.83	2.99

Table S1. The results of EIS fitting into equivalent circuit model for CdSe/NiO/NF with different prepare conditions

 Table S2. Comparison of different NiO-based photocathodes in a three-electrode PEC cell for the

 HER

		Photocurrent		
			density at an	
Photocathode	conditions	Cocatalysist	applied potential	Ref.
			(V vs. NHE)	
CdSe(SILAR)/NiO	buffer solution		50 μ A cm ⁻² at	Present work
NWs/NF	(pH=6); λ>400	No	-0.014 V	
	nm			
$MoS_2/CdSe(SILAR)$	buffer solution	MoS_2	22 μ A cm ⁻² at	1
/porous NiO/FTO	(pH=6); λ>400 nm		-0.014 V	
CdSe(SII AD)/	0.1 MIJC[0, 0.0]	No	$< 20 \text{ u} \text{ A cm}^{-2} \text{ at } 0$	2
NiO/ETO	M PRS(nH = 6.8)	NO	$\sim 20 \mu\text{A cm}$ at 0	2
10/110	$\lambda > 420 \text{ nm}$		to 0.5 V	
	107 4 20 mm			
CdS/NiO/ FTO	0.05 M Na ₂ SO ₄	Cobaloxime	25 μ A cm ⁻² at 0	3
			V	
CdSe/NiO/FTO	0.1 M Na ₂ SO ₄ ,	No	8 μA cm ⁻²	4
linker-engineered	(pH=6.8); λ>400		55 µA cm ⁻² at	4
CdSe/NiO/FTO	nm		-0.1 V	
		C D	102	-
CaSe/NIO/FIO	$0.1 \text{ M Na}_2 \text{SO}_4,$	Сор	$102 \ \mu A \ cm^{-2}$	5
	(pH=6.8); λ >400	Co	$100 \mu\text{A cm}^2$	5
	nm		at 0 V	

Sample	Ni(NO ₃) ₂ ·6H ₂	CO(NH) ₂	SILAR cycles	Rct	CPE
	O (M)	(M)	of CdSe	(Ω)	(µF)
CdSe/NiO-1/NF	0.014	0.028	6	202.2	0.57
CdSe/NiO-2/NF	0.028	0.056	6	117.4	2.50
CdSe/NiO-3/NF	0.056	0.112	6	49.05	10.64
CdSe/NiO-4/NF	0.084	0.168	6	71.77	3.49
CdSe/NiO-5/NF	0.14	0.28	6	161.4	0.72

Table S3. The results of EIS fitting into equivalent circuit model for CdSe/NiO/NF with different prepare conditions

Notes and references

- 1 Y. M. Dong, Y. M. Chen, P. P. Jiang, G. L. Wang, X. M. Wu, R. X. Wu and C. Zhang, Chem. Asian J., 2015, 10, 1660-1667.
- 2 M. A. Par, S. Y. Lee, J. H. Kim, S. H. Kang, H. Kim, C. J. Choi and K. S. Ahu, Phys. Status Solidi A, 2014, 211, 1868-1872.
- 3 Y. Na, B. Hu, Q.-L. Yang, J. Liu, L. Zhou, R.-Q. Fan and Y.-L. Yang, Chin. Chem. Lett., 2015, 26, 141-144.
- 4 B. Liu, X.-B. Li, Y.-J. Gao, Z.-J. Li, Q.-Y. Meng, C.-H. Tung and L.-Z. Wu, Energy Environ. Sci., 2015, 8, 1443-1449.
- 5 P. Meng, M. Wang, Y. Yang, S. Zhang and L. C. Sun, J. Mater. Chem. A, 2015, 3, 18852-18859.