Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019 This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

New insights into interfacial photocharge transfer in TiO₂/C₃N₄

heterostructures: effects of facet and defect

Yuxuan Wu^a, Li-Min Liu^{b,*}, Xiaoqiang An^{c,*}, Tingcha Wei^a

^a Beijing Computational Science Research Center, Beijing 100193, China.

^b School of Physics, Beihang University, 100191, China.

E-mail: liminliu@buaa.edu.cn

^c Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. E-mail: xqan@tsinghua.edu.cn

Fig. S1. XRD patterns of different types of V_O -Ti O_2 and V_O -Ti O_2/V_N -g-C₃N₄ heterostructures.

Fig. S2. TEM images of g-C $_3N_4$ (a) and V_N -g-C $_3N_4$ (b).

Fig. S3. SEM image of 001-TiO₂ nanosheets. The average length (l) and average thickness (d) of nanosheets are determined to be 55 and 5nm, separately.

Fig. S4. Schematic illustration of 101-TiO₂ (a) and 001-TiO₂ (b).

Fig. S5. Kubelka-Munk function curves plotted against photon energy for 101- and 001-faceted TiO₂.

Fig. S6. Kubelka-Munk function curve plotted against photon energy for g-C₃N₄.

Fig S7. XPS survey spectra of g-C_3N_4, 101-TiO_2, 001-TiO_2, 101-TiO_2/g-C_3N_4 and 001-TiO_2/g-C_3N_4.

Fig. S8. Time course of photocatalytic H_2 evolution over $g-C_3N_4$ and $V_N-g-C_3N_4$.

Fig. S9. The recyclability tests of the V_0 -101-TiO₂/ V_N -g-C₃N₄ for hydrogen evolution.

Fig. S10. (a) Valence-band (VB) XPS spectra of 101- and 001-faceted TiO_2 . (b) Band positions of $101-TiO_2$ and $001-TiO_2$.

Sample	l/nm	d/nm	{001} facets %	{101} facets %
101-TiO ₂	13	24	2.7	97.3
001-TiO ₂	55	5	82.8	17.2

Table S1. Calculated facet percentage of 101-TiO₂ and 001-TiO₂

Table S2. Elemental analysis of $g-C_3N_4$ and V_N - $g-C_3N_4$

Samples	N (wt%)			C(x,t0/)	C/N male ratio
	C-N-C	N-(C) ₃	C-N-H _x	C (W1%)	C/N mole fatio
g-C ₃ N ₄	21.03	25.09	12.36	41.52	0.710
V_N -g- C_3N_4	33.00	15.53	8.19	43.18	0.761