Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Wrapping CuCo₂S₄ Arrays on Nickel Foam with Ni₂(CO₃)(OH)₂ Nanosheets as

High-performance Faradaic Electrode

Qingya Zhou, Jinping Huang*, Cuiyu Li, Zhiwei Lv, Huilin Zhu, Gang Hu

Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai

Normal University, Shanghai 200234, China

Figure S1 EDS spectrum and atom ratio of the NF/CuCo₂S₄-200@Ni₂(CO₃)(OH)₂ electrode with the CuCo₂S₄ synthesized at 200 °C.

Figure S2 (a) SEM images; (b) area full element mapping of NF/CuCo₂S₄- $200@Ni_2(CO_3)(OH)_2$ and Elemental mapping of C, Co, Cu, Ni, O and S.

Figure S3 XRD patterns of the NF/CuCo₂S₄@Ni₂(CO₃)(OH)₂ electrodes with CuCo₂S₄ synthesized at hydrothermal temperature of 120, 160, 200 °C, respectively.

Figure S4 EIS plots of NF/CuCo₂S₄-200 electrode (inset, equivalent circuit diagram of the NF/CuCo₂S₄-200@Ni₂(CO₃)(OH)₂ electrode fitting the electrochemical impedance spectra).

Figure S5 SEM images after charge/discharge 10000 cycles for the $Ni_2(CO_3)(OH)_2$ -wrapped electrode of NF/CuCo₂S₄-200@Ni₂(CO₃)(OH)₂ (a) and the bare electrode of NF/CuCo₂S₄-200 (b).

Figure S6 The brightness of light-emitting diode (LED) bulb at different time

Table S1. Comparison the electrochemical performance of NF/CuCo $_2S_4$ -200@Ni $_2(CO_3)(OH)_2$ with the electrode material in literature.

electrode material	electrolyte	specific capacity (C g ⁻¹)	cycling stability	ref.
flower-like CuCo ₂ S ₄	2 М КОН	363.6 (908.9 F g ⁻¹) at 5 mA cm ⁻²	91.1% (2000 cycles)	36
CuCo ₂ S ₄ nanospheres	3 М КОН	53.5 mF cm ⁻² at 0.17 mA cm ⁻²	86% (5500 cycles)	41
CuCo ₂ S ₄ /rGO composite	3 М КОН	262.5 (525 F g ⁻¹) at 1 A g ⁻¹	83% (1000 cycles)	46
NiO nanowall arrays	1 M KOH	148.5 (270 F g ⁻¹) at 0.67 A g ⁻¹	93% (4000 cycles)	47
CuCo ₂ S ₄ hollow spheres	6 M KOH	546 (1137.5 F g ⁻¹) at 2 A g ⁻¹	94.9% (6000 cycles)	48
NF/CuCo ₂ S ₄ -200@Ni ₂ (CO ₃)(OH) ₂ arrays	2 M KOH	343.9 at 0.3 A g ⁻¹	96.7% (10000 cycles)	This work