Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information (ESI)

Host-guest chemistry between cyclodextrin and hydrogen evolution catalyst of cobaloxime

Masaru Kato,^{a,b}* Keita Kon,^b Jun Hirayama,^b Ichizo Yagi^{a,b}*

^a Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810 Japan. E-mail: masaru.kato@ees.hokudai.ac.jp
^b Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo 060-0810 Japan.

Table of Contents

Table S1	p 2
Figs S1-S4	pp 3-6

Table S1. Crystal data and structure refinement for $(HNEt_3)[Co^{III}Cl(Hdmg)_2(4-pySO_3)]$ ·MeOH

Chemical formula	$C_{20}H_{38}ClCoN_6O_8S$		
Formula weight	617.00 g/mol		
Temperature	90(0) K		
Wavelength	0.71073 Å		
Crystal size	0.154 x 0.164 x 0.193 mm		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 8.2643(10) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 13.2989(17) Å	$\beta = 91.2760(17)^{\circ}$	
	c = 25.004(3) Å	$\gamma = 90^{\circ}$	
Volume	2747.4(6) Å ³		
Ζ	4		
Density (calculated)	1.492 g/cm ³		
Absorption coefficient	0.852 mm^{-1}		
<i>F</i> (000)	1296		
Theta range for data collection	1.63 to 27.07°		
Index ranges	-10<= <i>h</i> <=10, -17<= <i>k</i> <=12, -32<= <i>l</i> <=24		
Reflections collected	15310		
Independent reflections	6014 [R(int) = 0.0857]		
Goodness-of-fit on F_2	0.996		
Final <i>R</i> indices	R_1 =0.0542, w R_2 =0.1154 (3305 data; $I > 2\sigma(I)$)		
	$R_1=0.1253$, w $R_2=0.1582$ (all data)		

Fig. S1 Proton NMR spectra of **CoPyS** in the aromatic region varying the ratio of (a) $[\beta$ -CD]: ([β -CD]+[**CoPyS**]) and (b) [γ -CD]: ([γ -CD]+[**CoPyS**]) in D₂O.

Fig. 2 UV-Vis absorption spectrum of CoPyS (0.32 mM) in water.

Fig. S3 Time-courses of visible light-driven hydrogen evolution catalyzed by **CoPyS** (0.18 mM) with EY (0.36 mM) in the presence of γ -CD (0.54 mM, open circles) and in the absence of γ -CD (filled triangles) for the determination of quantum yields. A TEOA (0.74 M) buffered aqueous solution at pH 7 was used. The experiments were performed under Ar and visible light irradiation at 520 nm with a light intensity of 10 mW cm⁻².

Fig. S4 Cyclic voltammograms of CoPyS (0.5 mM) in the presence and absence of γ -CD (1.5 mM). These cyclic voltammograms were recorded in an aqueous solution containing 0.74 M TEOA and 0.1 M NaCl at pH 7 under Ar. A scanning rate was 0.02 V s⁻¹.