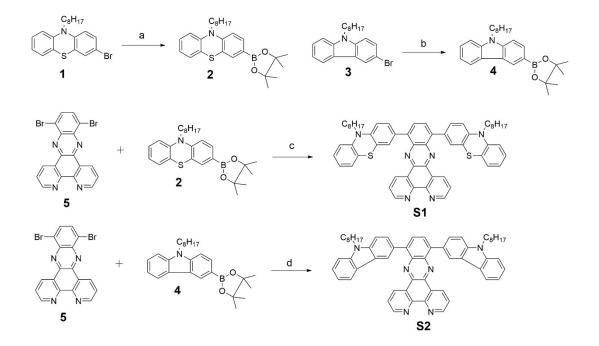
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019


Supporting information

New 2D- π -2A organic dyes with bipyridine anchoring group for DSSCs

Hai-Lang Jia,*a Zhi-Jie Peng, Bing-Quan Gong, Cheng-Yan Huangb and Ming-Yun Guana

^aSchool of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
^bDepartment of Chemistry, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Synthesis of the dyes

Scheme S1 synthesis procedure of S1 and S2. Reagents and conditions: a) bis(pinacolato)diboron, Pd(dppf)Cl₂, KOAc, DMF, 80°C; c) Pd(PPh₃)₄, K₂CO₃, H₂O, THF, 90°C; d) Pd(PPh₃)₄, K₂CO₃, H₂O, THF, 90°C.

Synthesis of compound 2

A mixture of compound 1 (3.00 g, 7.68 mmol), bis(pinacolato)diboron (2.93 g, 11.53 mmol) and KOAc (2.26 g, 23.05 mmol) in DMF (50 mL) was added Pd(dppf)Cl₂ (0.30 g) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and H₂O (150 mL) was added, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=10/1) to give the compound 2 (2.51 g, 75%). $\delta_{\rm H}$ ¹H NMR (CDCl₃, 500Hz) $\delta_{\rm H}$ 7.62-7.65 (m, 2H), 7.14-7.18 (m, 2H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 2H), 3.88 (t, *J* = 7.0 Hz, 2H), 1.80-1.86 (m, 2H), 1.42-1.49 (m, 2H), 1.30-1.40 (m, 20H), 0.93 (t, *J* = 6.5 Hz, 3H).

Synthesis of compound 4

The preparation method was the same as that of compound 2. $\delta_{\rm H}$ ¹H NMR (CDCl₃, 400 MHz) 8.60 (s, 1H), 8.12-8.14 (d, *J* = 7.6 Hz, 1H), 7.91-7.93 (d, *J* = 7.6 Hz, 1H), 7.43-7.47 (m, 1H), 7.38-7.40 (d, *J* = 8.4 Hz, 2H), 7.21-7.25 (m, 1H), 4.27-4.30 (t, *J* = 7.2 Hz, 2H), 1.83-1.87 (m, 2H), 1.40 (s, 12H), 1.25-1.34 (m, 10H), 0.84-0.87 (t, *J* = 6.8 Hz, 3H).

Synthesis of compound S1

Under nitrogen, compound 5 (0.50 g, 1.14 mmol), compound 2 (1.24 g, 2.84 mmol), K_2CO_3 (0.63 g, 4.54 mmol) and Pd(PPh_3)_4 (0.08 g) were dissolved in THF (50 mL) and H₂O (10 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by DCM (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (DCM/MeOH=50/1) to give S1 (0.73 g, 72%). δ_H ¹H NMR (CDCl₃, 400 MHz) 9.16-9.18 (m, 4H), 7.88 (s, 2H), 7.68 (s, 2H), 7.63-7.65 (d, *J* = 8.0 Hz, 4H), 7.20-7.23 (m, 4H), 7.03-7.05 (d, *J* = 8.4 Hz, 2H), 6.94-6.99 (m, 4H), 3.95-3.98 (t, *J* = 7.2 Hz, 4H), 1.90-1.97 (m, 4H), 1.49-1.54 (m, 4H), 1.24-1.43 (m, 16H), 0.86-0.89 (t, *J* = 6.8 Hz, 1.00 mmodel.

6H). $\delta_{\rm C}$ ¹³C NMR (CDCl₃, 100 MHz) 152.43, 145.02, 140.16, 139.64, 138.23, 133.96, 132.23, 130.06, 129.87, 129.80, 127.64, 127.56, 127.36, 124.60, 124.20, 122.59, 115.50, 114.79, 47.64, 31.82, 29.36, 29.30, 27.11, 22.63, 14.15.

Synthesis of compound S2

The preparation method was the same as that of S1. $\delta_{\rm H}$ ¹H NMR (CDCl₃, 400 MHz) 9.37-9.39 (m, 2H), 9.20-9.21 (m, 2H), 8.78-8.79 (s, 2H), 8.17-8.22 (m, 4H), 8.09-8.11 (m, 2H), 7.61-7.66 (m, 4H), 7.51-7.56 (m, 4H), 7.28-7.30 (m, 4H), 4.43-4.46 (t, J =7.2 Hz, 4H), 1.97-2.04 (m, 4H), 1.49-1.53 (m, 4H), 1.40-1.43 (m, 4H), 1.24-1.32 (m, 12H), 0.85-0.89 (t, J = 6.8 Hz, 6H). $\delta_{\rm C}$ ¹³C NMR (CDCl₃, 100 MHz) 152.15, 148.28, 140.92, 140.19, 139.83, 139.69, 134.00, 130.75, 129.04, 127.96, 125.39, 124.14, 123.27, 122.88, 120.32, 119.11, 108.95, 108.22, 43.36, 31.87, 29.49, 29.29, 27.47, 22.67, 14.14.

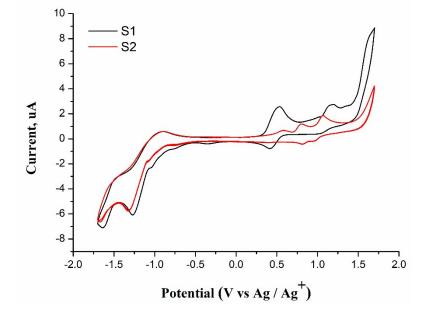
I I I I I I I I I I I I I I I I I I I						
	Dye	$a\lambda_{max}/nm$ ($\epsilon \times 10^4 M^{-1}$ cm ⁻¹)	^b E _{OX} /V (NHE)	^c E ₀₋₀ /eV	^d E [*] _{OX} /V (NHE)	Loading a (10 ⁻⁷ mol
	S1	493 (1.54)	0.96	1.90	-0.94	3.45

Table S1 Optical and electrochemical properties of dyes

1.02

473 (1.65)

S2


^{*a*}Absorption maximum in DCM solution (1×10⁻⁵ M), ^{*b*}the ground state oxidation potentials, ${}^{c}E_{0-0}$ was estimated from the absorption spectra, ${}^{d}E^{*}_{OX}$ was calculated by the formula: $E^{*}_{OX} = E_{OX}-E_{0-0}$.

2.06

-1.04

1.18

amounts cm⁻²)

Fig. S1 Cyclic voltammogram of **S1** and **S2** in DCM, 0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag^+ as reference electrode, scan rate: 100 mV s⁻¹, calibrated with ferrocene/ferrocenium (Fc/Fc⁺) as an external reference.

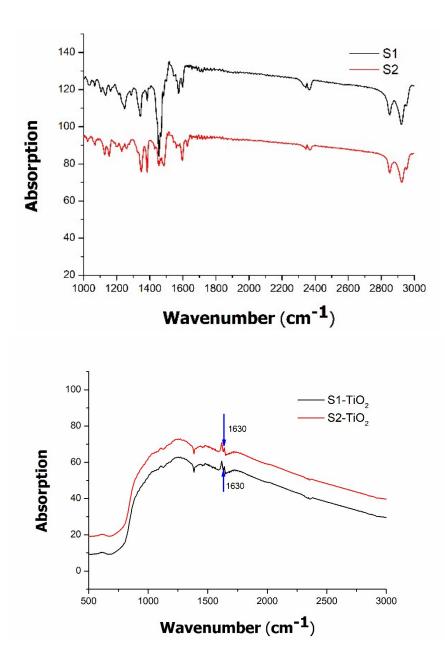


Fig. S2 FTIR spectra of dye powders and dyes adsorbed on TiO_2 nanoparticles.