Supplementary Information

for

Significant geometry and charge difference between the E_{5}^{4-} bare clusters of Group 14 Zintl anions and their coordinated form in $[E_{5}\{M(CO)_{3}\}_{2}]^{4-}$ (E=Si, Ge, Sn, Pb; M=Cr, Mo, W) complexes

Yasin Gholiee^{*,†}, Sadegh Salehzadeh^{*,‡} and Shiva Khodaveisi[‡]

† Department of Chemistry, Faculty of Science, Malayer University, Malayer, Iran

‡ Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

List of Contents:

Table S1. Electronic energies (Hartree) for optimized structures for E_5^n (E = Si, Ge, Sn, Pb;n = -4, -2, 0) clusters from different initial structures, at BP86/def2-TZVPP level of theory.

Table S2. Electronic energies (Hartree) for optimized structures for E_5^n (E = Si, Ge, Sn, Pb;n = -4, -2, 0) clusters from different initial structures, at M06-2X/def2-TZVPP level of theory.

Table S3. The computed and experimental E–E distances (Å) and E–E–E angles (°) for trigonal bipyramid E_5^{2-} (E = Si, Ge, Sn, Pb) clusters, at M06-2X/def2-TZVPP level of theory.

Table S4. The computed and experimental E–E distances (Å) and E–E–E angles (°) for trigonal bipyramid E_5^{2-} (E = Si, Ge, Sn, Pb) clusters. at BP86/def2-TZVPP level of theory.

Table S5. Computed and experimental structural parameters for $[Pb_5{Mo(CO)_3}_2]^{4-}$

Table S6. Computed bond lengths (Å) for $[E_5\{Cr(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Table S7. Computed bond lengths (Å) for $[E_5\{Mo(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Table S8. Computed bond lengths (Å) for $[E_5\{W(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Table S9. Calculated values of uncorrected interaction energies between the fragments (IE, kcal/mol), for $[E_5\{M(CO)_3\}_2]^{4-}$; (E = Si, Ge, Sn and Pb; M = Cr, Mo and W) complexes, at M06-2X/def2-TZVPP level of theory.

Table S10. Calculated values of uncorrected interaction energies between the fragments (IE, kcal/mol), for $[E_5\{M(CO)_3\}_2]^{4-}$; (E = Si, Ge, Sn and Pb; M = Cr, Mo and W) complexes, at BP86/def2-TZVPP level of theory.

Table S11. Calculated values of corrected interaction energies between the fragments (IE, kcal/mol), for $[E_5\{M(CO)_3\}_2]^{4-}$; (E = Si, Ge, Sn and Pb; M = Cr, Mo and W) complexes, at BP86/def2-TZVPP level of theory.

Table S12. Wiberg bond indices (WBIs) for $[E_5{Cr(CO)_3}_2]^{4-}$ at M06-2X/def2-TZVPP level of theory.

Table S13. Wiberg bond indices (WBIs) for $[E_5{Mo(CO)_3}_2]^4$ at M06-2X/def2-TZVPP level of theory.

Table S14. Wiberg bond indices (WBIs) for $[E_5\{W(CO)_3\}_2]^{4-}$ at M06-2X/def2-TZVPP level of theory.

Table S15. Calculated frequencies (cm⁻¹) for CO stretching bands in $[E_5{Cr(CO)_3}_2]^{4-}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Table S16. Calculated frequencies (cm⁻¹) for CO stretching bands in $[E_5{Mo(CO)_3}_2]^{4-}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Table S17. Calculated frequencies (cm⁻¹) for CO stretching bands in $[E_5\{W(CO)_3\}_2]^{4-1}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Table S18. Energy decomposition analysis results between $[E_5\{M(CO)_3\}]^{4-}$ and $\{M(CO)_3\}$ fragments (A-BA') in $[E_5\{M(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb; M=Cr, Mo and W) at BP86-D3/TZP(ZORA) level of theory.

Table S19. Comparison of computed Ge–Ge distances (Å) for trigonal bipyramid Ge_5^{2-} cluster in Ref. 43 and in this study.

Table S20. Comparison of computed Ge–Ge distances (Å) for trigonal bipyramid Ge_5 cluster in Ref. 43 and in this study.

Figure S1. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from square pyramid initial (C_{4v}) geometry, at M06-2X/def2-TZVPP level of theory.

Figure S2. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from trigonal bipyramid (D_{3h}) initial geometry, at M06-2X/def2-TZVPP level of theory.

Figure S3. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from planar pentagon (D_{5h}) initial geometry, at M06-2X/def2-TZVPP level of theory.

Figure S4. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from square pyramid initial (C_{4v}) geometry, at BP86/def2-TZVPP level of theory.

Figure S5. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from trigonal bipyramid (D_{3h}) initial geometry, at BP86/def2-TZVPP level of theory.

Figure S6. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from planar pentagon

(D_{sh}) initial geometry, at BP86/def2-TZVPP level of theory. Figure S7. Optimized structures for $[Si_5{Cr(CO)_3}_2]^{4-}$ (a), $[Ge_5{Cr(CO)_3}_2]^{4-}$ (b), $[Sn_5{Cr(CO)_3}_2]^{4-}$

(c) and $[Pb_5\{Cr(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory. Figure S8. Optimized structures for $[Si_5\{Mo(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Mo(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Mo(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Mo(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory. Figure S9. Optimized structures for $[Si_5\{W(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{W(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{W(CO)_3\}_2]^{4-}$

(c) and $[Pb_5\{W(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S10. Four highest occupied molecular orbitals for $[Si_5{Cr(CO)_3}_2]^{4-}$ (a), $[Ge_5{Cr(CO)_3}_2]^{4-}$ (b). $[Sn_5{Cr(CO)_3}_2]^{4-}$ (c) and $[Pb_5{Cr(CO)_3}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory. Figure S11. Four highest occupied molecular orbitals for $[Si_5\{Mo(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Mo(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Mo(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Mo(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory. Figure S12. Four highest occupied molecular orbitals for $[Si_5\{W(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{W(CO)_3\}_2]^{4-}$ (b), $[Si_5(W(CO)_3)_2]^{4-}$ (c) $[Si_5(W(CO)_3)_2]^{4-}$ (b), $[Si_5(W(CO)_3)_2]^{4-}$ (c) $[Si_5(W(CO)_$

 $[Sn_5\{W(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{W(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S13. Deformation densities associated with the first four important orbital interactions for $[Si_{5}\{Cr(CO)_{3}\}_{2}]^{4-}$ (a), $[Ge_{5}\{Cr(CO)_{3}\}_{2}]^{4-}$ (b), $[Sn_{5}\{Cr(CO)_{3}\}_{2}]^{4-}$ (c) and $[Pb_{5}\{Cr(CO)_{3}\}_{2}]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

Figure S14. Deformation densities associated with the first four important orbital interactions for $[Si_{5}\{Cr(CO)_{3}\}_{2}]^{4-}$ (a), $[Ge_{5}\{Mo(CO)_{3}\}_{2}]^{4-}$ (b), $[Sn_{5}\{Mo(CO)_{3}\}_{2}]^{4-}$ (c) and $[Pb_{5}\{Mo(CO)_{3}\}_{2}]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

Figure S15. Deformation densities associated with the first four important orbital interactions for (a), $[Ge_{5}\{W(CO)_{3}\}_{2}]^{4-}$ (b), $[Sn_{5}\{W(CO)_{3}\}_{2}]^{4-}$ (c) and $[Pb_{5}\{W(CO)_{3}\}_{2}]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

Figure S16. Optimized structures for $[Mo(CO)_6]$ (a), $[\eta^6-C_6H_6\{Mo(CO)_3\}]$ (b), $[Mes\{Mo(CO)_3\}]$ (c) and $[(\eta^5-C_5H_5) \{Mo(CO)_3\}_2]^-$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Table S1. Electronic energies (Hartree) for optimized structures for E_5^n (E = Si, Ge, Sn, Pb;n = -4, -2, 0) clusters from different initial structures, at M06-2X/def2-TZVPP level of theory.

	Cluster			
Initial structure	Si ₅	Ge ₅	Sn ₅	Pb ₅
Square pyramid	-1447.3508614	-10385.1097046	-1071.3048338	-963.8448469
Triangular bipyramid	-1447.3508225	-10385.1097059	-1071.3048458	-963.8684009
Flat pentagon	-1447.3063576	-10385.0876782	-1071.2911033	-963.8621653
	$Si_5^2^-$	Ge_{5}^{2-}	Sn_{5}^{2-}	Pb_{5}^{2}
Square pyramid	-1447.3817545	-10385.1348706	-1071.3443037	-963.8851717
Triangular bipyramid	-1447.3816964	-10385.1348765	-1071.344277	-963.8851635
Flat pentagon	-1447.3121205	-10385.1348534	-1071.3442936	-963.8375353
	Si ⁴ ₅	Ge_{5}^{4-}	Sn_{5}^{4-}	Pb_{5}^{4}
Square pyramid	-1446.6881814	-10384.4266891	-1070.7848552	-963.315488
Triangular bipyramid	-1446.6881641	-10384.4266372	-1070.7743446	-963.3154976
Flat pentagon	-1446.6620006	-10384.4176391	failed	-963.3031012

Table S2. Electronic energies (Hartree) for optimized structures for E_5^n (E = Si, Ge, Sn, Pb;n = -4, -2, 0) clusters from different initial structures, at BP86/def2-TZVPP level of theory.

Turiti al atom atoma	Cluster				
Initial structure	Si ₅	Ge ₅	Sn ₅	Pb ₅	
Square pyramid	-1447.5894132	-10386.4547171	-1072.2995401	-965.3204571	
Triangular bipyramid	-1447.5894190	-10386.4547196	-1072.2995408	-965.3427366	
Flat pentagon	-1447.5494595	-10386.4313793	-1072.2814731	-965.3287632	
	Si_5^2	Ge_5^{2-}	Sn_{5}^{2}	$Pb_5^2^-$	
Square pyramid	-1447.6141965	-10386.4641576	-1072.3384982	-965.3758572	
Triangular bipyramid	-1447.6141969	-10386.4641581	-1072.3384672	-965.3758572	
Flat pentagon	-1447.6141971	-10386.4176057	-1072.2954255	-965.3347756	
	_ <i>Si</i> ⁴ ₅	Ge_{5}^{4-}	Sn_{5}^{4-}	Pb_{5}^{4-}	

Square pyramid	-1446.9366186	-10385.7555606	-1071.7922253	-964.8386400
Triangular bipyramid	-1446.9365943	-10385.7555436	-1071.7922253	failed
Flat pentagon	-1446.9261822	-10385.7611219	failed	-964.8328395

Table S3. The computed and experimental^a E–E distances (Å) and E–E–E angles (°) for trigonal bipyramid E_5^{2-} (E = Si, Ge, Sn, Pb) clusters, at M06–2X/def2-TZVPP level of theory.

	Si_5^2	Ge_5^2	$Sn_5^2^-$	Pb_{5}^{2}
distances				
E1–E2	2.36	2.54	2.92	3.05
	2.39	2.48	2.90	3.00
E1–E4	2.36	2.54	2.92	3.05
	2.34	2.49	2.90	3.00
E1–E5	2.36	2.54	2.92	3.05
	2.32	2.51	2.90	3.00
E2–E4	2.52	2.72	3.15	3.31
	2.51	2.70	3.09	3.24
E4–E5	2.52	2.72	3.15	3.31
	2.54	2.68	3.09	3.24
E2–E5	2.52	2.72	3.15	3.31
	2.56	2.69	3.09	3.24
E3–E2	2.36	2.54	2.92	3.05
	2.40	2.47	2.83	3.00
E3–E4	2.36	2.54	2.92	3.05
	2.35	2.47	2.83	3.00
E3–E5	2.36	2.54	2.92	3.05
	2.28	2.49	2.83	3.00
E3-E1	3.73	3.98	4.57	4.76
	3.66	3.88	4.48	4.70
RMS	0.04	0.06	0.06	0.06
Angles				
E1-E2-E3	104.08	103.40	102.95	102.54
	99.80	102.66	102.83	102.99
E1-E4-E3	104.07	103.35	102.91	102.57
	102.73	101.91	102.84	102.99
E1-E5-E3	104.07	103.31	102.91	102.57
	105.52	103.26	102.84	102.99
E5-E3-E2	64.39	64.96	65.33	65.60
	66.25	66.19	64.44	65.25
E5-E3-E4	64.36	64.94	65.27	65.60
	66.51	65.84	64.44	65.25

Е2-Е3-Е4	64.39	64.95	65.33	65.60
	63.90	65.35	64.44	65.25
E5-E1-E2	64.39	64.97	65.33	65.60
	65.76	65.76	66.31	65.28
E5-E1-E4	64.36	64.96	65.27	65.60
	65.97	65.36	66.31	65.25
E2-E1-E4	64.39	64.96	65.33	65.60
	64.12	64.81	66.31	65.25
E4-E5-E2	60.02	59.98	60.03	60.00
	59.05	59.59	60.00	60.00
E5-E2-E4	59.97	60.01	59.95	60.00
	60.07	60.08	60.00	60.00
E2-E4-E5	60.01	60.01	60.03	60.00
	60.87	60.32	60.00	60.00
RMS	1.75	0.51	0.66	0.33

^a The experimental data are given in bold.

Table S4. The computed and experimental^a E–E distances (Å) and E–E–E angles (°) for trigonal bipyramid E_5^2 (E = Si, Ge, Sn, Pb) clusters, at BP86/def2-TZVPP level of theory.

-	ciusters, at Di		theory.	
	Si_5^2	Ge_5^2	$Sn_5^2^-$	Pb_{5}^{2}
distances	~	~	~	0
E1–E2	2.40	2.56	2.95	3.09
	2.39	2.48	2.90	3.00
E1–E4	2.40	2.56	2.95	3.10
	2.34	2.49	2.90	3.00
E1–E5	2.40	2.56	2.95	3.09
	2.32	2.51	2.90	3.00
E2–E4	2.57	2.76	3.16	3.30
	2.51	2.70	3.09	3.24
E4–E5	2.57	2.76	3.17	3.31
-	2.54	2.68	3.09	3.24
E2–E5	2.57	2.76	3.16	3.30
	2.56	2.69	3.09	3.24
E3–E2	2.40	2.56	2.95	3.09
	2.40	2.47	2.83	3.00
E3–E4	2.40	2.56	2.95	3.09
	2.35	2.47	2.83	3.00
E3–E5	2.40	2.56	2.95	3.09
	2.28	2.49	2.83	3.00
E3-E1	3.76	4.00	4.62	4.87
	3.66	3.88	4.48	4.70
RMS	0.06	0.08	0.09	0.09
Angles				
E1-E2-E3	103.51	102.82	103.35	103.89
	99.80	102.66	102.83	102.99
E1-E4-E3	103.51	102.87	103.26	103.79
	102.73	101.91	102.84	102.99
E1-E5-E3	103.56	102.91	103.31	103.90
	105.52	103.26	102.84	102.99
E5-E3-E2	64.82	65.35	65.15	64.44
	66.25	66.19	64.44	65.25
Е5-Е3-Е4	64.82	65.33	64.97	64.64
		vi		
		• •		

	66.51	65.84	64.44	65.25
E2-E3-E4	64.81	65.35	64.14	64.42
	63.90	65.35	64.44	65.25
E5-E1-E2	64.82	65.35	64.93	64.52
	65.76	65.76	66.31	65.28
E5-E1-E4	64.82	65.36	65.08	64.74
	65.97	65.36	66.31	65.25
E2-E1-E4	64.84	65.39	64.89	64.53
	64.12	64.81	66.31	65.25
E4-E5-E2	59.98	60.00	59.91	59.91
	59.05	59.59	60.00	60.00
E5-E2-E4	60.00	60.00	60.13	60.18
	60.07	60.08	60.00	60.00
E2-E4-E5	60.00	60.00	59.95	59.92
	60.87	60.32	60.00	60.00
RMS	1.53	0.50	0.80	0.70

^a The experimental data are given in bold.

Distance	BP86	M06-2X	Exp.
Pb1–Pb2	3.11	3.10	3.02
Pb2–Pb3	3.13	3.10	3.06
Pb3–Pb4	3.13	3.09	3.06
Pb4–Pb5	3.13	3.09	3.05
Pb5–Pb1	3.13	3.10	3.01
Mo1–Mo2	3.33	3.33	3.22
Mo1–C1	1.95	1.92	1.93
Mo1–C2	1.95	1.92	1.92
Mo1–C3	1.95	1.92	1.96
Mo2–C4	1.95	1.92	1.92
Mo2–C5	1.95	1.92	1.93
Mo2–C6	1.95	1.92	1.93
RMS	0.07	0.05	_
C1-Mo1-C2	87.86	88.20	93.64
C1-Mo1-C3	86.92	87.36	89.23
C2-Mo1-C3	89.85	89.84	93.69
C4-Mo2-C5	86.91	87.36	87.56
C4-Mo2-C6	89.85	89.83	87.47
С5-Мо-С6	89.85	88.21	92.68
RMS	3.36	3.50	_
Mo1-Pb1-Mo2	64.33	63.24	63.43
Mo1-Pb2-Mo2	64.33	63.32	63.96
Mo1-Pb3-Mo2	63.55	63.04	63.63
Mo1–Pb4–Mo2	65.01	63.34	63.96
Mo1-Pb5-Mo2	63.55	63.05	63.67
RMS	0.64	0.56	_

Table S5. Computed^a and experimental structural parameters for $[Pb_5{Mo(CO)_3}_2]^{4-}$.

^a The data obtained at BP86/def2-TZVPP and M06-2X/def2-TZVPP levels of theory.

Bond lengths	$[Si_5 \{Cr(CO)_3\}_2]^{4}$	$[Ge_{5}{Cr(CO)_{3}}_{2}]^{4}$	$[Sn_{5}\{Cr(CO)_{3}\}_{2}]^{4}$	$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$
Cr1–E1	2.58	2.69	2.96	3.09
Cr1–E2	2.60	2.69	2.92	3.01
Cr1–E3	2.59	2.70	2.95	3.06
Cr1–E4	2.58	2.70	2.95	3.06
Cr1–E5	2.61	2.69	2.93	3.01
Cr2–E1	2.60	2.70	2.92	3.00
Cr2–E2	2.59	2.70	2.96	3.07
Cr2–E3	2.59	2.70	2.94	3.04
Cr2–E4	2.60	2.70	2.93	3.03
Cr2–E5	2.57	2.70	2.96	3.09
E1–E2	2.51	2.63	2.94	3.06
Е2-Е3	2.51	2.63	2.94	3.05
E3–E4	2.52	2.64	2.94	3.06
E4–E5	2.52	2.64	2.94	3.06
E5-E1	2.93	3.00	3.10	3.17

Table S6. Computed bond lengths (Å) for $[E_5{Cr(CO)_3}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Table S7. Computed bond lengths (Å) for $[E_5\{Mo(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Bond lengths	$[Si_{5}{Mo(CO)_{3}}_{2}]^{4}$	$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	$[Sn_{5}{Mo(CO)_{3}}_{2}]^{4}$	$[Pb_{5}{Mo(CO)_{3}}_{2}]^{4}$
Mo1–E1	2.70	2.80	3.04	3.14
Mo1–E2	2.72	2.81	3.03	3.13
Mo1–E3	2.72	2.81	3.06	3.17
Mo1–E4	2.71	2.81	3.03	3.10
Mo1–E5	2.73	2.81	3.06	3.16
Mo2–E1	2.73	2.82	3.03	3.13
Mo2–E2	2.71	2.81	3.04	3.14
Mo2–E3	2.71	2.81	3.06	3.16
Mo2–E4	2.72	2.81	3.03	3.10
Mo2–E5	2.69	2.80	3.06	3.17
E1-E2	2.58	2.70	3.02	3.13
E2-E3	2.58	2.70	3.01	3.13
E3–E4	2.58	2.70	3.01	3.13
E4–E5	2.59	2.71	3.02	3.13
E5-E1	3.19	3.23	3.28	3.33

Table S8. Computed bond lengths (Å) for $[E_5\{W(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb), at M06-2X/def2-TZVPP level of theory.

Bond lengths	$[Si_5 \{W(CO)_3\}_2]^4$	$[Ge_{5}{W(CO)_{3}}_{2}]^{4}$	$[Sn_5{W(CO)_3}_2]^4$	$[Pb_{5}\{W(CO)_{3}\}_{2}]^{4}$
Mo1–E1	2.71	2.81	3.05	3.15
Mo1–E2	2.74	2.83	3.04	3.13
Mo1-E3	2.73	2.83	3.07	3.18
Mo1–E4	2.72	2.83	3.03	3.11
Mo1-E5	2.74	2.83	3.07	3.17
Mo2–E1	2.75	2.83	3.04	3.13
Mo2–E2	2.72	2.82	3.05	3.15

Mo2–E3	2.73	2.83	3.07	3.17
Mo2–E4	2.74	2.83	3.03	3.11
Mo2–E5	2.71	2.82	3.07	3.18
E1-E2	2.58	2.71	3.03	3.14
E2-E3	2.58	2.70	3.02	3.14
E3-E4	2.59	2.71	3.02	3.14
E4–E5	2.60	2.72	3.03	3.14
E5-E1	3.22	3.25	3.29	3.34

Table S9. Calculated values of uncorrected interaction energies between the fragments (IE, kcal/mol), for $[E_5\{M(CO)_3\}_2]^{4-}$; (E=Si, Ge, Sn and Pb; M=Cr, Mo and W) complexes, at M06-2X/def2-TZVPP level of theory.

Complex	IF	IF	IF	IE	IE _{total}	
Complex	IL' _{AB-A'}	IL'A-BA'	IL _{A-B}	IL'B-A'	(Eq. 6)	(Eq. 7)
$[Si_{5}\{Cr(CO)_{3}\}_{2}]^{4}$	-209.7	-209.9	-196.4	-196.4	-406.1	-406.1
$[Ge_{5}{Cr(CO)_{3}}_{2}]^{4}$	-208.4	-208.4	-186.5	-186.5	-394.9	-394.9
$[Sn_5{Cr(CO)_3}_2]^4$	-174.6	-174.6	-125.5	-125.5	-300.1	-300.1
$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$	-157.3	-157.9	-124.7	-124.0	-281.9	-281.9
$[Si_{5}\{Mo(CO)_{3}\}_{2}]^{4}$	-214.0	-213.9	-199.7	-199.8	-413.7	-413.7
$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	-214.1	-214.1	-206.2	-206.3	-420.4	-420.4
$[Sn_5 \{Mo(CO)_3\}_2]^4$	-188.2	-188.0	-139.6	-139.7	-327.7	-327.7
$[Pb_{5}{Mo(CO)_{3}}_{2}]^{4}$	-173.8	-174.4	-137.5	-136.9	-311.3	-311.3
$[Si_{5}\{W(CO)_{2}\}_{2}]^{4}$	-233.0	-232.9	-218.4	-218 5	-451.4	-451 4
$[Ge_5\{W(CO)_3\}_2]^4$	-233.5	-233.3	-221.9	-222.1	-455.4	-455.4
$[Sn_5 \{W(CO)_3\}_2]^4$ -	-204.7	-204.9	-156.3	-156.1	-361.0	-361.0
$[Pb_{5}\{W(CO)_{3}\}_{2}]^{4}$	-197.2	-197.2	-161.7	-161.8	-358.9	-358.9

Table S10. Calculated values of uncorrected interaction energies between the fragments (IE, kcal/mol), for $[E_5\{M(CO)_3\}_2]^{4-}$; (E = Si, Ge, Sn and Pb; M = Cr, Mo and W) complexes, at BP86/def2-TZVPP level of theory.

Complex	IE	IE	IE	IE	IE _{total}		
Complex	IL'AB-A'	IL'A-BA'	IL _{A-B}	IL'B-A'	(Eq. 6)	(Eq. 7)	
$[Si_5{Cr(CO)_3}_2]^4$	-238.8	-254.2	-178.9	-163.5	-417.7	-417.7	
$[Ge_{5}\{Cr(CO)_{3}\}_{2}]^{4}$	-254.9	-252.9	-170.8	-172.7	-425.7	-425.7	
$[Sn_{5}{Cr(CO)_{3}}_{2}]^{4}$	-193.8	-196.8	-131.8	-128.7	-325.5	-325.5	

$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$	-179.7	-189.8	-127.3	-117.1	-306.9	-306.9
$[Si_{5}{Mo(CO)_{3}}_{2}]^{4}$	-229.4	-230.6	-189.7	-188.4	-419.0	-419.0
$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	-239.8	-234.5	-189.9	-195.1	-429.7	-429.7
$[Sn_{5}{Mo(CO)_{3}}_{2}]^{4}$	-200.4	-196.5	-127.9	-131.8	-328.3	-328.3
$[Pb_{5}{Mo(CO)_{3}}_{2}]^{4}$	-187.0	-192.3	-127.8	-122.6	-314.9	-314.9
$[Si_{5}\{W(CO)_{3}\}_{2}]^{4}$	-247.8	-241.7	-200.3	-206.4	-448.1	-448.1
$[Ge_{5}{W(CO)_{3}}_{2}]^{4}$	-245.3	-243.0	-211.9	-214.2	-457.2	-457.2
$[Sn_5{W(CO)_3}_2]^4$	-210.7	-213.4	-146.3	-143.5	-357.0	-357.0
$[Pb_{5}{W(CO)_{3}}_{2}]^{4}$	-199.8	-206.1	-140.8	-134.5	-340.6	-340.6

Table S11. Calculated values of corrected interaction energies between the fragments (IE, kcal/mol), for $[E_5{M(CO)_3}_2]^{4-}$; (E = Si, Ge, Sn and Pb; M = Cr, Mo and W) complexes, at BP86/def2-TZVPP level of theory.

Complex	IEARAN	IEA-BA'	IE R	IE _{P-A'} —	IE _{total}	
Compten	AD-A	тад-ва	тада-в	TTP-A	(Eq. 6)	(Eq. 7)
$[Si_5{Cr(CO)_3}_2]^4$	-195.8	-241.9	-148.3	-136.4	-372.1	-372.1
$[Ge_{5}{Cr(CO)_{3}}_{2}]^{4}$	-196.8	-198.7	-134.5	-130.7	-362.1	-362.1
$[Sn_{5}\{Cr(CO)_{3}\}_{2}]^{4}$	-179.7	-186.7	-114.6	-123.1	-305.9	-305.9
$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$	-162.1	-173.4	-103.0	-104.7	-289.3	-289.3
$[Si_{5}{Mo(CO)_{3}}_{2}]^{4}$	-198.4	-209.4	-145.8	-147.0	-355.3	-355.3
$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	-211.6	-203.2	-135.3	-140.7	-345.9	-345.9
$[Sn_5 \{Mo(CO)_3\}_2]^4$	-176.8	-179.2	-115.5	-119.4	-314.1	-314.1
$[Pb_{5}\{Mo(CO)_{3}\}_{2}]^{4}$	-161.8	-166.9	-118.1	-110.4	-297.3	-297.3
$[Si_{r}\{W(CO)_{2}\}_{2}]^{4}$	-232.6	-230.5	-171.6	-177 5	-411.5	-411.5
$[Ge_5\{W(CO)_3\}_2]^{4-}$	-232.0	-215.3	-178.0	-181.2	-402.4	-402.4
$[Sn_5\{W(CO)_3\}_2]^4$	-209.5	-212.1	-139.4	-127.3	-340.7	-340.7
$[Pb_{5}\{W(CO)_{3}\}_{2}]^{4}$	-191.7	-205.9	-129.4	-123.9	-326.8	-326.8

Table S12. W1	berg bond indices (WBIs)	for $1-5(1-5)$ at	M06-2X/def2-1ZVPP lev	vel of theory.
Bond	$[Si_{5}{Cr(CO)_{3}}_{2}]^{4}$	$[Ge_{5}{Cr(CO)_{3}}_{2}]^{4}$	$[Sn{Cr(CO)_{3}}_{2}]^{4}$	$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$
Cr1–E1	0.47	0.47	0.42	0.39
Cr1–E2	0.44	0.45	0.46	0.48
Cr1–E3	0.45	0.46	0.44	0.43
Cr1–E4	0.46	0.46	0.43	0.42
Cr1–E5	0.43	0.45	0.47	0.48
Cr2–E1	0.43	0.45	0.47	0.49
Cr2–E2	0.46	0.46	0.43	0.40
Cr2–E3	0.45	0.46	0.45	0.46
Cr2–E4	0.44	0.45	0.45	0.46
Cr2–E5	0.43	0.47	0.43	0.40
E1-E2	0.61	0.61	0.62	0.63
E2-E3	0.62	0.62	0.62	0.62
E3–E4	0.62	0.62	0.62	0.63
E4–E5	0.61	0.61	0.62	0.63
E5-E1	0.60	0.61	0.61	0.62

Table S12. Wiberg bond indices (WBIs) for $[E_5{Cr(CO)_3}_2]^4^-$ at M06-2X/def2-TZVPP level of theory.

Table S13. Wiberg bond indices (WBIs) for $[E_5{Mo(CO)_3}_2]^{4-}$ at M06-2X/def2-TZVPP level of theory.

Bond	$[Si_{5}{Mo(CO)_{3}}_{2}]^{4}$	$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	$[Sn\{Mo(CO)_3\}_2]^4$ -	$[Pb_{5}{Mo(CO)_{3}}_{2}]^{4}$
Mo1–E1	0.51	0.50	0.45	0.43
Mo1-E2	0.47	0.48	0.46	0.46
Mo1–E3	0.48	0.48	0.46	0.44
Mo1–E4	0.48	0.48	0.45	0.45
Mo1–E5	0.46	0.48	0.47	0.46
Mo2–E1	0.46	0.47	0.47	0.46
Mo2–E2	0.49	0.49	0.45	0.43
Mo2–E3	0.48	0.48	0.46	0.46
Mo2–E4	0.48	0.48	0.46	0.45
Mo2–E5	0.50	0.49	0.46	0.44
E1–E2	0.57	0.59	0.61	0.62
E2-E3	0.59	0.60	0.61	0.62
E3–E4	0.59	0.60	0.61	0.63
E4–E5	0.58	0.59	0.62	0.63
E5-E1	0.57	0.58	0.60	0.62

	iberg bolid indices (w Dis) 101 ° ° ° ° ° ° a		ever of theory.
Bond	$[Si_5 \{W(CO)_3\}_2]^4$	$[Ge_{5}\{W(CO)_{3}\}_{2}]^{4}$	$[Sn\{W(CO)_3\}_2]^{4-}$	$[Pb_{5}\{W(CO)_{3}\}_{2}]^{4}$
W1-E1	0.53	0.52	0.47	0.45
W1-E2	0.49	0.49	0.48	0.47
W1-E3	0.49	0.49	0.47	0.46
W1-E4	0.50	0.50	0.47	0.46
W1-E5	0.48	0.48	0.48	0.47
W2-E1	0.47	0.48	0.47	0.47
W2-E2	0.51	0.51	0.47	0.45
W2-E3	0.49	0.49	0.48	0.47
W2-E4	0.49	0.49	0.47	0.46
W2-E5	0.52	0.51	0.47	0.46
E1-E2	0.57	0.57	0.58	0.60
E2–E3	0.58	0.58	0.58	0.58
E3–E4	0.59	0.59	0.58	0.59
E4–E5	0.58	0.58	0.58	0.59
E5-E1	0.56	0.56	0.57	0.58

Table S14. Wiberg bond indices (WBIs) for $[E_5{Cr(CO)_3}_2]^{4-}$ at M06-2X/def2-TZVPP level of theory.

Table S15. Calculated frequencies $(cm^{-1})^a$ for CO stretching bands in $[E_5\{Cr(CO)_3\}_2]^{4-}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Complex	ΰ _{C=O}	WBI				Distance(Å)		
	1661.95	Cr1–C1	1.31	Cr2-C4	1.31	Cr1-C1	1.792	Cr2-C4	1.792
		Cr1–C2	1.32	Cr2–C5	1.32	Cr1–C2	1.788	Cr2–C5	1.788
$[Si \{Cr(CO)\}\}^{4-}$	1667.15	Cr1–C3	1.30	Cr2–C6	1.30	Cr1–C3	1.793	Cr2–C6	1.793
$[3l_5(cr(c0)_3)_2]$		C101	1.81	C4–O4	1.81	C1O1	1.183	C4–O4	1.183
	1734.89	C2–O2	1.80	C5–O5	1.80	C2–O2	1.184	C5–O5	1.184
		C3–O3	1.82	C6–O6	1.82	C3–O3	1.182	C6–O6	1.182
	1656.68	Cr1–C1	1.33	Cr2–C4	1.32	Cr1–C1	1.788	Cr2-C4	1.789
		Cr1–C2	1.34	Cr2–C5	1.34	Cr1–C2	1.786	Cr2–C5	1.785
$[C_{\alpha} \{C_{r}(C_{\alpha})\}]^{4-}$	1664.07	Cr1–C3	1.31	Cr2–C6	1.32	Cr1–C3	1.790	Cr2–C6	1.790
		C101	1.80	C4–O4	1.80	C101	1.184	C4–O4	1.183
	1732.73	C2–O2	1.80	C5–O5	1.79	C2–O2	1.184	C5–O5	1.184
		C3–O3	1.81	C6–O6	1.81	C3–O3	1.182	C6–O6	1.183
	1663 21	Cr1-C1	1 36	$Cr^2 - CA$	1 36	Cr1-C1	1 787	$Cr^2 - CA$	1 780
$[Sn_{r}(Cn)_{r}]^{4-}$	1005.21	Cr1-C1	1.30	$C_{12} - C_{4}$	1.30	Cr1-C1	1.786	$Cr_{2}-C_{4}$	1.785
[5775(57(55)3)2]	1672.38	Cr1–C2 Cr1–C3	1.35	Cr2–C5 Cr2–C6	1.35	Cr1–C2 Cr1–C3	1.790	Cr2–C5 Cr2–C6	1.790

	1734.48	C1-O1 C2-O2 C3-O3	1.80 1.79 1.81	C4–O4 C5–O5 C6–O6	1.81 1.79 1.81	C1-O1 C2-O2 C3-O3	1.182 1.182 1.180	C4–O4 C5–O5 C6–O6	1.181 1.183 1.180
	1640.40	Cr1–C1	1.38	Cr2–C4	1.37	Cr1–C1	1.784	Cr2–C4	1.786
		Cr1–C2	1.39	Cr2–C5	1.39	Cr1–C2	1.783	Cr2–C5	1.782
$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$	1652.32	Cr1–C3	1.37	Cr2–C6	1.38	Cr1–C3	1.787	Cr2–C6	1.785
		C1O1	1.78	C4–O4	1.79	C1O1	1.185	C4–O4	1.183
	1716.33	C2–O2	1.78	C5–O5	1.77	C2–O2	1.185	C5–O5	1.186
		C3–O3	1.80	C6–O6	1.79	C3–O3	1.182	C606	1.183

^a The scaling factor λ =0.9323 was used at M06-2X/def2-TZVPP level of theory.

Table S16. Calculated frequencies $(cm^{-1})^a$ for CO stretching bands in $[E_5\{Mo(CO)_3\}_2]^{4-}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Complex	Ū C=0	WBI				Distance(Å)			
	1691.30	Mo1–C1	1.34	Mo2–C4	1.33	Mo1–C1	1.946	Mo2–C4	1.948
		Mo1–C2	1.36	Mo2–C5	1.36	Mo1–C2	1.944	Mo2–C5	1.942
$[Si \{M_{0}(CO)\}]^{4-}$	1699.1	Mo1–C3	1.32	Mo2–C6	1.32	Mo1–C3	1.948	Mo2–C6	1.948
[3151M0(00)332]		C1O1	1.82	C4–O4	1.83	C101	1.177	C4–O4	1.176
	1771.38	C2–O2	1.82	C5–O5	1.81	C2–O2	1.179	C5–O5	1.179
		C3–O3	1.84	C6–O6	1.84	C3–O3	1.175	C6–O6	1.176
	1686.66	Mo1–C1	1.37	Mo2–C4	1.36	Mo1–C1	1.938	Mo2–C4	1.939
		Mo1–C2	1.38	Mo2–C5	1.39	Mo1–C2	1.936	Mo2–C5	1.934
$[G_{P} \{M_{Q}(CO)\}\}^{4-}$	1696.01	Mo1–C3	1.35	Mo2–C6	1.36	Mo1–C3	1.939	Mo2–C6	1.939
[005[100(00)3]2]		C101	1.82	C4–O4	1.83	C101	1.178	C4–O4	1.177
	1770.38	C2–O2	1.81	C5–O5	1.81	C2–O2	1.179	C5–O5	1.180
		C3–O3	1.83	C6–O6	1.83	C3–O3	1.176	C6–O6	1.177
4	1601 40	Mo1-C1	1.40	M_02-C4	1.40	Mo1_C1	1 930	Mo2_C4	1 930
$[Sn_{5}{Mo(CO)_{3}}_{2}]^{4}$	1071.49	Mo1–C1 Mo1–C2	1.40	Mo2-C4	1.42	Mol-C2	1.927	Mo2–C4	1.928

	1701.74 1773.98	Mo1–C3 C1–O1 C2–O2 C3–O3	1.40 1.83 1.81 1.82	Mo2–C6 C4–O4 C5–O5 C6–O6	1.41 1.83 1.81 1.82	Mo1–C3 C1–O1 C2–O2 C3–O3	1.930 1.176 1.179 1.176	Mo2–C6 C4–O4 C5–O5 C6–O6	1.929 1.176 1.178 1.177
	1668.65	Mol-Cl	1.45	Mo2–C4	1.43	Mol-Cl	1.920	Mo2–C4	1.921
$[Pb_{5}\{Mo(CO)_{3}\}_{2}]^{4}$	1681.00	Mo1–C2 Mo1–C3	1.43	Mo2–C5 Mo2–C6	1.43	Mo1–C2 Mo1–C3	1.920	Mo2–C5 Mo2–C6	1.919
	1758.11	C1-01 C2-02 C3-03	1.79 1.79 1.81	C4-04 C5-05 C6-06	1.81 1.79 1.80	C1-01 C2-02 C3-03	1.182 1.181 1.179	C4-04 C5-05 C6-06	1.179 1.182 1.180

^a The scaling factor λ =0.9323 was used at M06-2X/def2-TZVPP level of theory.

Table S17. Calculated frequencies $(cm^{-1})^a$ for CO stretching bands in $[E_5\{W(CO)_3\}_2]^{4-}$ complexes as well as bond lengths (Å) and Wiberg bond indices (WBIs) for M-C and C-O bonds.

Complex	ΰ _{C=0}	WBI				Distance(Å	()		
	1690.99	W1C1	1.32	W 2–C4	1.31	W1C1	1.966	W 2–C4	1.968
		W1-C2	1.34	W2-C5	1.35	W1-C2	1.963	W2-C5	1.961
$[Si \{W(CO)\}]^{4-}$	1699.85	W1-C3	1.30	W2-C6	1.30	W1-C3	1.968	W2-C6	1.968
$[3i_{5}(ii)(00)_{3})_{2}]$		C101	1.79	C4–O4	1.80	C1O1	1.179	C4–O4	1.177
	1771.58	C2–O2	1.78	C5–O5	1.78	C2–O2	1.180	C5–O5	1.181
		C3–O3	1.81	C6–O6	1.81	C3–O3	1.177	C6–O6	1.177
	1683.94	W1C1	1.36	W 2–C4	1.34	W1C1	1.958	W 2–C4	1.960
		W1-C2	1.37	W2-C5	1.38	W1-C2	1.956	W2-C5	1.954
$[C_{\alpha} \{W(C_{\alpha})\}]^{4-}$	1693.31	W1-C3	1.34	W2-C6	1.34	W1-C3	1.960	W2-C6	1.960
$[0e_{5}(n(co)_{3})_{2}]$		C101	1.78	C4–O4	1.79	C1O1	1.180	C4–O4	1.179
	1767.64	C2–O2	1.78	C5–O5	1.77	C2–O2	1.181	C5–O5	1.182
		C3–O3	1.80	C6–O6	1.79	C3–O3	1.178	C6–O6	1.179
$[Sn \{W(CO)\}\}^{4-}$	1690.37	W1C1	1.41	W 2–C4	1.40	W1C1	1.950	W 2–C4	1.951
[5115(11 (00)3)2]		W1-C2	1.43	W2-C5	1.43	W1-C2	1.949	W2C5	1.948

	1699.49 1770.97	W1–C3 C1–O1 C2–O2 C3–O3	1.39 1.79 1.78 1.80	W2–C6 C4–O4 C5–O5 C6–O6	1.41 1.80 1.78 1.79	W1–C3 C1–O1 C2–O2 C3–O3	1.951 1.179 1.180 1.177	W2–C6 C4–O4 C5–O5 C6–O6	1.950 1.177 1.180 1.178
	1670.53	W1-C1	1.44	W 2–C4	1.44	W1-C1	1.942	W 2–C4	1.942
$[\mathbf{D}] (\mathbf{U}(\mathbf{CO})) 14^{-}$	1683.14	W1–C2 W1–C3	1.46 1.44	W2–C5 W2–C6	1.44 1.46	W1–C2 W1–C3	1.940 1.942	W2–C5 W2–C6	1.942 1.940
$[Pb_{5}\{W(LO)_{3}\}_{2}]^{2}$		C101	1.77	C4–O4	1.77	C101	1.182	C4–O4	1.181
	1756 67	C2–O2	1.75	C5–O5	1.77	C2–O2	1.184	C5–O5	1.182
	1/30.07	C3–O3	1.75	C6–O6	1.76	C2–O2	1.182	C5–O5	1.181

^a The scaling factor λ =0.9323 was used at M06-2X/def2-TZVPP level of theory.

Table S18. Energy decomposition analysis results between $[E_5\{M(CO)_3\}]^{4-}$ and $\{M(CO)_3\}$ fragments (A-BA') in $[E_5\{M(CO)_3\}_2]^{4-}$ complexes (E=Si, Ge, Sn and Pb; M=Cr, Mo and W) at BP86-D3/TZP(ZORA) level of theory

uicory.					
Complex	ΔE_{int}	ΔE_{Pauli}	ΔE_{elstat}	ΔE_{orb}	ΔE_{disp}
$[Si_5 \{Cr(CO)_3\}_2]^4$	-233.2	410.8	-315.5 (49%)	-322.6 (50%)	-5.9 (1%)
$[Ge_{5}{Cr(CO)_{3}}_{2}]^{4}$	-202.0	326.3	-269.0 (51%)	-252.4 (48%)	-6.9 (1%)
$[Sn_5 \{Cr(CO)_3\}_2]^4$	-182.4	323.5	-252.2 (50%)	-245.8 (49%)	-8.0 (2%)
$[Pb_{5}{Cr(CO)_{3}}_{2}]^{4}$	-163.0	285.7	-229.1 (51%)	-209.8 (47%)	-9.7 (2%)
$[Si_5 \{Mo(CO)_3\}_2]^4$	-217.2	349.8	-291.1 (51%)	-269.2 (47%)	-6.7 (1%)
$[Ge_{5}{Mo(CO)_{3}}_{2}]^{4}$	-194.1	301.1	-262.0 (53%)	-226.0 (46%)	-7.3 (1%)
$[Sn_{5}{Mo(CO)_{3}}_{2}]^{4}$	-178.3	351.0	-284.5 (54%)	-236.9 (45%)	-7.9 (2%)
$[Pb_{5}\{Mo(CO)_{3}\}_{2}]^{4}$	-164.9	309.3	-257.6 (54%)	-206.9 (44%)	-9.7 (2%)
$[Si_5 \{W(CO)_3\}_2]^4$	-227.1	315.7	-290.9 (54%)	-244.7 (45%)	-7.2 (1%)
$[Ge_{5}\{W(CO)_{3}\}_{2}]^{4}$	-223.6	394.5	-340.6 (55%)	-269.7 (44%)	-7.8 (1%)
$[Sn_{5}\{W(CO)_{3}\}_{2}]^{4}$	-199.1	398.7	-328.9 (55%)	-260.6 (44%)	-8.3 (1%)
$[Pb_{5}\{W(CO)_{3}\}_{2}]^{4}$	-185.7	353.8	-302.3 (56%)	-227.1 (42%)	-10.1 (2%)

Table S19. Comparison of computed Ge–Ge distances (Å) for trigonal bipyramid Ge_5^2 cluster in Ref. 43 and in this study.

Distances (Å)	Ref. 43	This study		_
Distances (A)	B3LYP/LANL2DZ	BP86/def2-TZVPP	M06-2X/def2-TZVPP	_
Ge1—Ge4	2.577	2.558	2.536	
Ge1—Ge5	2.577	2.559	2.536	4
Ge2—Ge4	2.577	2.558	2.536	
Ge2—Ge5	2.577	2.557	2.537	
Ge3—Ge4	2.577	2.558	2.537	1 3
Ge3—Ge5	2.577	2.556	2.538	$\backslash 4$
Ge1—Ge2	2.818	2.762	2.724	$\langle \rangle / \rangle$
Ge1—Ge3	2.818	2.762	2.724	5
Ge2—Ge3	2.818	2.761	2.724	
Ge4Ge5	3.997	4.000	3.980	
RMS	0.107	0.080	0.060	

this study.				
Distances	Ref. 43	This study		_
(Å)	B3LYP/LANL2DZ	BP86/def2-TZVPP	M06-2X/def2-TZVPP	_
Ge1—Ge4	2.491	2.464	2.458	
Ge1—Ge5	2.491	2.464	2.458	4
Ge2—Ge4	2.491	2.464	2.458	
Ge2—Ge5	2.491	2.464	2.457	
Ge3—Ge4	2.491	2.464	2.458	
Ge3—Ge5	2.491	2.464	2.457	
Ge1Ge2	3.351	3.284	3.281	
Ge1Ge3	3.351	3.284	3.280	5
Ge2Ge3	3.351	3.284	3.280	
Ge4—Ge5	3.141	3.147	3.133	
RMS	There is n	ot experimental data for	r comparison	

Table S20. Comparison of computed Ge–Ge distances (Å) for trigonal bipyramid Ge_5 cluster in Ref. 43 and in this study.

Figure S1. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from square pyramid initial (C_{4v}) geometry, at M06-2X/def2-TZVPP level of theory.

Figure S2. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from trigonal bipyramid (D_{3h}) initial geometry, at M06-2X/def2-TZVPP level of theory.v

n	Si_5^n	Ge_5^n	Sn_5^n	Pb_5^n
	5	5	5	5

Figure S3. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from planar pentagon (D_{5h}) initial geometry, at M06-2X/def2-TZVPP level of theory.

Figure S4. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from square pyramid (C_{4v}) initial geometry, at BP86/def2-TZVPP level of theory.

r Si^n Ge^n Sn^n Ph^n

Figure S5. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from trigonal bipyramid (D_{3h}) initial geometry, at BP86/def2-TZVPP level of theory.

Figure S6. Optimized structures of E_5^n (E = Si, Ge, Sn, Pb; n = -4, -2, 0) clusters from planar pentagon (D_{5h}) initial geometry, at BP86/def2-TZVPP level of theory.

Figure S7. Optimized structures for $[Si_5\{Cr(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Cr(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Cr(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Cr(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S8. Optimized structures for $[Si_5\{Mo(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Mo(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Mo(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Mo(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S9. Optimized structures for $[Si_5\{W(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{W(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{W(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{W(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S10. Four highest occupied molecular orbitals for $[Si_5\{Cr(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Cr(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Cr(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Cr(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S11. Four highest occupied molecular orbitals for $[Si_5\{Mo(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Mo(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Mo(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Mo(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S12. Four highest occupied molecular orbitals for $[Si_5\{W(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{W(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{W(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{W(CO)_3\}_2]^{4-}$ (d) complexes, at M06-2X/def2-TZVPP level of theory.

Figure S13. Deformation densities associated with the first four important orbital interactions for $[Si_5\{Cr(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Cr(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Cr(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Cr(CO)_3\}_2]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

(a)

(b)

(c)

 $\Delta \rho 1: v = -1.9994$ $\Delta E = -163.8 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9999$ $\Delta E = -143.2 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9999$ $\Delta E = -117.4 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9999$ $\Delta E = -102.9 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0564$ $\Delta E = -76.5 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0500$ $\Delta E = -67.4 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0329$ $\Delta E = -63.1 \text{ kcal/mol}$

 $\Delta E = -61.0 \text{ kcal/mol}$

 $\Delta \rho 3: v = -1.0404$ $\Delta E = -66.1$ kcal/mol

 $\Delta \rho 3: v = -1.0349$

 $\Delta E = -60.4 \text{ kcal/mol}$

 $\Delta \rho 4: v = -1.0218$ $\Delta E = -65.4$ kcal/mol

 $\Delta \rho 4: v = -1.0187$ $\Delta E = -63.6 \text{ kcal/mol}$

 $\Delta \rho 4: v = -0.9566$ $\Delta E = -51.3$ kcal/mol

 $\Delta \rho 4: v = -0.9511$ $\Delta E = -50.0 \text{ kcal/mol}$

Figure S14. Deformation densities associated with the first four important orbital interactions for $[Si_5\{Mo(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{Mo(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{Mo(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{Mo(CO)_3\}_2]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

 $\Delta \rho 3: v = -0.9643$ $\Delta E = -52.5 \text{ kcal/mol}$

 $\Delta \rho 3: v = -0.9551$ $\Delta E = -50.2 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9997$ $\Delta E = -173.9 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9994$ $\Delta E = -152.6 \text{ kcal/mol}$

 $\Delta \rho 1: v = -1.9999$ $\Delta E = -124.5 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0532$ $\Delta E = -77.8 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0586$ $\Delta E = -70.1 \text{ kcal/mol}$

 $\Delta \rho 2: v = -1.0267$ $\Delta E = -67.3$ kcal/mol

 $\Delta \rho 3: v = -1.0369$ $\Delta E = -73.5$ kcal/mol

 $\Delta \rho 3: v = -1.0473$ $\Delta E = -67.2 \text{ kcal/mol}$

 $\Delta \rho 3: v = -0.9809$ $\Delta E = -58.2 \text{ kcal/mol}$

 $\Delta \rho 3: v = -0.9737$ $\Delta E = -56.4 \text{ kcal/mol}$

 $\Delta \rho 4: v = -1.0120$ $\Delta E = -73.2 \text{ kcal/mol}$

 $\Delta \rho 4: v = -1.0129$ $\Delta E = -72.1 \text{ kcal/mol}$

 $\Delta \rho 4: v = -0.9769$ $\Delta E = -60.7 \text{ kcal/mol}$

 $\Delta \rho 4: v = -0.9699$ $\Delta E = -55.5 \text{ kcal/mol}$

Figure S15. Deformation densities associated with the first four important orbital interactions for $[Si_5\{W(CO)_3\}_2]^{4-}$ (a), $[Ge_5\{W(CO)_3\}_2]^{4-}$ (b), $[Sn_5\{W(CO)_3\}_2]^{4-}$ (c) and $[Pb_5\{W(CO)_3\}_2]^{4-}$ (d) complexes, at BP86-D3/TZP(ZORA) level of theory.

(a)

(b)

(c)

Figure S16. Optimized structures for $[Mo(CO)_6]$ (a), $[(\eta^6-C_6H_6)\{Mo(CO)_3\}]$ (b), $[Mes\{Mo(CO)_3\}]$ (c) and $[(\eta^5-C_5H_5)\{Mo(CO)_3\}_2]^-$ (d) complexes, at M06-2X/def2-TZVPP level of theory.