**Electronic supplementary information** 

# Palladium(II) and platinum(II) complexes of glyoxalbis(N-

# aryl)osazone: molecular and electronic structures, anti-

# microbial activities and DNA-binding study

Sarat Chandra Patra,<sup>ab</sup> Amit Saha Roy,<sup>ac</sup> Saswati Banerjee,<sup>d</sup> Ananya Banerjee,<sup>e</sup> Krishna Das

Saha,<sup>d</sup> Ranjan Bhadra,<sup>a</sup> Kausikisankar Pramanik<sup>\*b</sup> and Prasanta Ghosh<sup>\*a</sup>

 <sup>a</sup>Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
 <sup>b</sup>Department of Chemistry, Jadavpur University, Kolkata-700032, India.
 <sup>c</sup>Department of Chemistry, New Alipore College, L Block, New Alipore, Kolkata-700053, India.
 <sup>d</sup>Cancer Biology & Inflammatory Disorder, Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032.
 <sup>e</sup>Department of Chemistry, Bijaygarh Jyotish Roy College, Jadavpur, Kolkata-700032, India.

<sup>\*</sup>To whom correspondence should be addressed. Email: ghosh@pghosh.in

| Table of Contents                                                                                       |            |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
|                                                                                                         | Page No.   |  |  |  |  |
| Materials and physical measurements                                                                     | \$2-\$4    |  |  |  |  |
| Crystallographic data for 2 and 4                                                                       | S5         |  |  |  |  |
| Molecular geometry of 2                                                                                 | S6         |  |  |  |  |
| Cyclic voltammograms of 1 and 2 in DCM solvent                                                          | <b>S</b> 6 |  |  |  |  |
| Cyclic voltammograms of 1-4 in CH <sub>3</sub> CN solvent                                               | S7-S8      |  |  |  |  |
| X-band EPR spectra of (a) $[3]^-$ and (b) $[4]^-$ in CH <sub>2</sub> Cl <sub>2</sub> solutions at 298 K | <b>S</b> 8 |  |  |  |  |
| EPR measurement parameters table                                                                        | S9         |  |  |  |  |
| Spin density plot of [ <b>3</b> ] <sup>+</sup>                                                          | S9         |  |  |  |  |
| Gas phase optimized geometries of 1, 2, 3, 4, [3] <sup>-</sup> and [4] <sup>-</sup>                     | S9-10      |  |  |  |  |
| Frontier molecular orbital composition (%) in the ground state for 1-4                                  | S10        |  |  |  |  |
| Transition types and dominant contributions of UV-vis-NIR absorption bands of <b>3</b>                  | S10        |  |  |  |  |
| FMO pictures of 1-4                                                                                     | S11        |  |  |  |  |
| Absorption spectral change of (a) <b>1</b> and (b) <b>3</b> in presence of CT-DNA in buffer             | S12        |  |  |  |  |
| Fluorescence titration data of 1 and 3 on the displacement of CT-DNA                                    | S12-S13    |  |  |  |  |
| Comparative study of anti-leishmanial activity                                                          | S13        |  |  |  |  |
| Anti-leishmanial activity of the compounds <b>1</b> and <b>3</b>                                        | S14        |  |  |  |  |
| MIC values of <b>1</b> and <b>3</b> in bacterial system                                                 | S15        |  |  |  |  |
| The antifungal activity (MIC) of 1 and 3                                                                | S15        |  |  |  |  |
| Optimized coordinates of $1, 2, 3, 4, [3]^-$ and $[4]^-$                                                | S16- S21   |  |  |  |  |
| References                                                                                              | S21-S23    |  |  |  |  |

Phone: +91-33-2428-7347; Fax: +91-33-2477-3597

#### Materials and physical measurements

Reagents or analytical grade materials were obtained from Sigma-Aldrich Corporation, India and used without further purification. Spectroscopic grade solvents were used for spectroscopic measurements. The C, H, N contents of the compounds were obtained from a Perkin-Elmer 2400 series II elemental analyzer. Infrared spectra of the samples were measured from 4000 to 400 cm<sup>-1</sup> as KBr pellets at room temperature on a Perkin-Elmer FT-IR-Spectrophotometer Spectrum RX1. <sup>1</sup>H NMR spectral measurements were carried out on a Bruker DPX-300 MHz spectrometer with tetramethylsilane (TMS) as an internal reference. ESI mass spectra were recorded on a micro mass Q-TOF mass spectrometer. Electronic absorption spectra in solution at 298 K were measured on a Perkin-Elmer Lambda 750 UV-vis-NIR spectrophotometer in the range 3300–175 nm. Fluorescence quenching studies were recorded on a Perkin-Elmer LS 55 fluorescence spectrophotometer. The electro-analytical instrument, BASi Epsilon-EC has been used for cyclic voltammetric experiment containing a Pt working electrode and a Pt-wire auxiliary electrode. Tetrabutylammonium hexafluorophosphate (Bu<sub>4</sub>NPF<sub>6</sub>) was used as a supporting electrolyte, and the potentials are referenced to the Ag/AgCl electrode. The value of the Fc<sup>+</sup>/Fc couple under similar experimental conditions is found to be 0.51 V vs Ag/AgCl. A BASi SEC-C thin layer quartz glass spectroelectrochemical cell kit (light path length of 1 mm) with platinum-gauze working electrode and SEC-C platinum counter electrode was used for spectroelectrochemical measurements. Changes in electronic absorption spectra in solution with fixed applied potentials were recorded on a PerkinElmer Lambda 750 spectrophotometer. The X-band electron paramagnetic resonance (EPR) spectra at 298 K were measured on a Magnettech GmbH MiniScope MS400 spectrometer (equipped with temperature controller TC H03), where the microwave frequency was measured with a frequency counter FC400. All the EPR spectra were simulated using Easy Spin software.<sup>1</sup>

### **Biological studies**

Roswell Park Memorial Institute medium-1640 (RPMI-1640), M-199 medium, fetal bovine serum (FBS), penicillin–streptomycin (PS) and HEPES were procured from Gibco BRL. Tissue culture plastic wares were acquired from NUNC (Roskilde, Denmark). The standard anti-leishmanial agent Miltefosine, MTT [(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and DMSO were purchased from Sigma-Aldrich, USA. The culture media M-199 used for Leishmania was procured from Sigma-Aldrich, USA. Other culture media constituents FBS, penicillin, streptomycin and gentamyicin, Trypan blue and cell cultured grade Nabicarbonate were purchased from HiMedia, India. Another standard anti-leishmanial agent, SAG (sodium stibogluconate) was purchased from Albert-David, India. For bacterial and fungal culture Nutrient Brothand Czapek-Dox Broth/Agar, respectively, were purchased from Merck, India. Calf thymus DNA (CT-DNA, type I, 42% GC content) and analytical grade ethidium bromide (EB) [3, 8-di-amino-5-ethyl-6-phenylphenanthridium] were purchased from local supplier (SRL, India). All other reagents used were of highest purity grade available.

### X-Ray crystallographic data collection and refinement of the structures

Single crystals of **2** (red) and **4** (red) were picked up with nylon loops and were mounted on a Bruker Kappa-CCD diffractometer equipped with a Mo-target rotating anode X-ray source and a graphite monochromator (Mo-K $\alpha$ ,  $\lambda = 0.71073$  Å). Final cell constants were obtained from least squares fits of all measured reflections. Structures were readily solved by Patterson method and subsequent difference Fourier techniques. The crystallographic data are listed in Table 1. ShelXS97<sup>2a</sup> and ShelXL97<sup>2b</sup> were used for the structure solution and refinement. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at the calculated positions and refined as riding atoms with isotropic displacement parameters.

### Density functional theory (DFT) calculations

All calculations reported in this article were done with the Gaussian  $03W^3$  program package supported by GaussView 4.1. The DFT<sup>4</sup> and TD DFT<sup>5</sup> calculations were performed at the level of Becke three parameter hybrid functional with the non-local correlation functional of Lee-(B3LYP).<sup>6</sup> Gas-phase geometries of cis-[Pd(L<sup>NHPh</sup>H<sub>2</sub>)Cl<sub>2</sub>] Yang-Parr (1). cis- $[Pd(L^{NH(ClPh)}H_2)Cl_2]$  (2), *cis*- $[Pt(L^{NHPh}H_2)Cl_2]$  (3), *cis*- $[Pt(L^{NHAr}H_2)Cl_2]$  (4), with singlet spin state and  $cis-[Pt(L^{NHPh}H_2)Cl_2]^-$  ([3]<sup>-</sup>),  $cis-[Pt(L^{NHAr}H_2)Cl_2]^-$  ([4]<sup>-</sup>) with doublet spin state were optimized using Pulay's Direct Inversion<sup>7</sup> in the Iterative Subspace (DIIS), 'tight' convergent SCF procedure<sup>8</sup> ignoring symmetry. In all calculations, a LANL2DZ basis set along with the corresponding effective core potential (ECP) was used for platinum metal.<sup>9</sup> Valence double zeta basis set, 6-31G<sup>10</sup> for H was used. For C, N and Cl non-hydrogen atoms valence double zeta with diffuse and polarization functions,  $6-31++G^{**11}$  as basis set was employed for all calculations. The percentage contributions of metal, chloride and osazone ligand to the frontier orbitals were calculated using GaussSum programme package.<sup>12</sup> The sixty lowest singlet excitation energies on the optimized geometry of 3 were calculated by TD DFT method in CH<sub>2</sub>Cl<sub>2</sub> solvent using PCPM model.<sup>13</sup> The nature of transitions were calculated by adding the probability of same type among alpha and beta molecular orbital.

## Table S1 Crystallographic data for ${\bf 2}$ and ${\bf 4}$

|                                                                                      | 2                                                                | 4                               |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| formula                                                                              | $C_{14}H_{12}Cl_4N_4Pd$                                          | $C_{14}H_{12}Cl_4N_4Pt$         |  |  |  |  |  |  |
| CCDC no.                                                                             | 1534727                                                          | 1534728                         |  |  |  |  |  |  |
| Fw                                                                                   | 484.48                                                           | 572.98                          |  |  |  |  |  |  |
| cryst colour                                                                         | red                                                              | orange                          |  |  |  |  |  |  |
| cryst syst                                                                           | Orthorhombic                                                     | Orthorhombic                    |  |  |  |  |  |  |
| space group                                                                          | Pnma                                                             | <i>Cmc</i> 2(1)                 |  |  |  |  |  |  |
| <i>a</i> (Å)                                                                         | 7.35830(10)                                                      | 28.6797(10)                     |  |  |  |  |  |  |
| b (Å)                                                                                | 29.4166(5)                                                       | 7.9654(3)                       |  |  |  |  |  |  |
| <i>c</i> (Å)                                                                         | 7.90080(10)                                                      | 7.5874(3)                       |  |  |  |  |  |  |
| $\beta$ (deg)                                                                        | 90.00                                                            | 90.00                           |  |  |  |  |  |  |
| $V(\text{\AA}^3)$                                                                    | 1710.18(4)                                                       | 1733.31(11)                     |  |  |  |  |  |  |
| Ζ                                                                                    | 4                                                                | 4                               |  |  |  |  |  |  |
| <i>T</i> (K)                                                                         | 273(2)                                                           | 293(2)                          |  |  |  |  |  |  |
| calcd (g cm <sup>-3</sup> )                                                          | 1.882                                                            | 2.196                           |  |  |  |  |  |  |
| reflns collected/2 $\theta_{max}$                                                    | 17080/56.32                                                      | 12668/55.24                     |  |  |  |  |  |  |
| unique reflns/R <sub>int</sub>                                                       | 2076/0.0278                                                      | 2049/0.0356                     |  |  |  |  |  |  |
| reflns $[I > 2\sigma(I)]$                                                            | 1879                                                             | 1991                            |  |  |  |  |  |  |
| $\lambda$ (Å) / $\mu$ (mm <sup>-1</sup> )                                            | 0.71073/1.712                                                    | 0.71073/8.714                   |  |  |  |  |  |  |
| F(000)                                                                               | 952                                                              | 1080                            |  |  |  |  |  |  |
| $R1^{a} [I > 2\sigma(I)]/GOF^{b}$                                                    | 0.0379/1.280                                                     | 0.0385/1.064                    |  |  |  |  |  |  |
| $R1^a$ (all data)                                                                    | 0.0426                                                           | 0.0393                          |  |  |  |  |  |  |
| $wR2^{c} [I > 2\sigma (I)]$                                                          | 0.1215                                                           | 0.1107                          |  |  |  |  |  |  |
| no. of param./ restr.                                                                | 130/0                                                            | 106/1                           |  |  |  |  |  |  |
| residual density (eÅ <sup>-3</sup> )                                                 | residual density $(e Å^{-3})$ 0.952 1.244                        |                                 |  |  |  |  |  |  |
| ${}^{a}\mathrm{R1} = \Sigma   F_{o}  -  F_{c}   / \Sigma  F_{o} . {}^{b}\mathrm{G0}$ | OF = $\{\Sigma[w(F_o^2 - F_c^2)^2]$                              | $]/(n-p)\}^{1/2}$ . $^{c}wR2 =$ |  |  |  |  |  |  |
| $[\Sigma] w(F_{c})$                                                                  | $[\sum_{n=1}^{2} -F_{c}^{2}]^{2}]/\Sigma[w(F_{o}^{2})^{2}]]^{1}$ | /2                              |  |  |  |  |  |  |
| where w = $1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ , P = $(F_o^2 + 2F_c^2)/3$ .           |                                                                  |                                 |  |  |  |  |  |  |



Fig. S1 Molecular geometry of 2 (40% thermal ellipsoid).



**Fig. S2** Cyclic voltammograms of (a)  $[Pd(L^{NHPh}H_2)Cl_2]$  (1) and (b)  $[Pd(L^{NH(ClPh)}H_2)Cl_2]$  (2) (scan rate:100) in CH<sub>2</sub>Cl<sub>2</sub> solvent at 298K. Conditions: 0.20 M  $[N(n-Bu)_4]PF_6$  supporting electrolyte; platinum working electrode.







**Fig. S3** Cyclic voltammograms of  $[Pd(L^{NHPh}H_2)Cl_2]$  (1),  $[Pd(L^{NH(ClPh)}H_2)Cl_2]$  (2),  $[Pt(L^{NHPh}H_2)Cl_2]$  (3) and  $[Pt(L^{NH(ClPh)}H_2)Cl_2]$  (4) (scan rate:100) in CH<sub>3</sub>CN solvent at 298K. Left: Anodic scan only, Right: Full range scan (-2 to + 2 V). Conditions: 0.20 M [N(n-Bu)\_4]PF\_6 supporting electrolyte; platinum working electrode.



**Fig. S4** X-band EPR spectra of (a)  $[3]^-$  and (b)  $[4]^-$  in CH<sub>2</sub>Cl<sub>2</sub> at 298 K. (black = experimental, red = simulated).

| Table S2 EPR | measurement | parameters |
|--------------|-------------|------------|
|--------------|-------------|------------|

| Complexes                | Conditions                               | Temp | Mod. | B <sub>0</sub> | B <sub>0</sub> | Frequency | Sweep |
|--------------------------|------------------------------------------|------|------|----------------|----------------|-----------|-------|
|                          |                                          | (K)  | Amp. | Field          | Sweep          | (GHz)     | Time  |
|                          |                                          |      | (G)  | (mT)           | (mT)           |           | (s)   |
| <b>[3</b> ] <sup>-</sup> | CH <sub>2</sub> Cl <sub>2</sub> solution | 298  | 0.15 | 336.83         | 199.74         | 9.47320   | 30    |
| <b>[4]</b> <sup>-</sup>  |                                          | 298  | 0.18 | 338.77         | 149.95         | 9.47340   | 30    |



**Fig. S5** Spin density plots of [**3**]<sup>+</sup>; values from Mulliken spin population analyses (isovalue = 0.004).





Fig. S6 Gas phase optimized geometries of (a) 1, (b) 2, (c) 3, (d) 4, (e) [3]<sup>-</sup> and (f) [4]<sup>-</sup>.

Table S3 Frontier molecular orbital composition (%) in the ground state for 1-4

|              |                    |                | % Contribution |                                                      |        |                                                     |  |  |  |
|--------------|--------------------|----------------|----------------|------------------------------------------------------|--------|-----------------------------------------------------|--|--|--|
|              |                    |                | MO             | MCl <sub>2</sub> Osazone Major participation of orbi |        |                                                     |  |  |  |
| MO<br>number | MO<br>descriptions | Energy<br>(eV) | М              | Cl                                                   | Ligand |                                                     |  |  |  |
|              | 1                  |                |                |                                                      |        |                                                     |  |  |  |
| 90           | LUMO               | -2.86          | 5              | 1                                                    | 94     | $\pi^*$ (Osazone)                                   |  |  |  |
| 89           | НОМО               | -6.02          | 3              | 4                                                    | 93     | π (Osazone)                                         |  |  |  |
|              |                    |                |                | 2                                                    |        |                                                     |  |  |  |
| 106          | LUMO               | -2.93          | 11             | 5                                                    | 84     | $\pi^*$ (Osazone)                                   |  |  |  |
| 105          | HOMO               | -6.22          | 8              | 11                                                   | 81     | $\pi$ (Osazone)                                     |  |  |  |
|              |                    |                |                | 3                                                    | 6      |                                                     |  |  |  |
| 90           | LUMO               | -2.87          | 8              | 1                                                    | 91     | $\pi^*$ (Osazone)                                   |  |  |  |
| 89           | HOMO               | -6.09          | 18             | 18                                                   | 64     | $\pi$ (Osazone) + d <sub>Pt</sub> + p <sub>Cl</sub> |  |  |  |
| 4            |                    |                |                |                                                      |        |                                                     |  |  |  |
| 106          | LUMO               | -2.96          | 10             | 2                                                    | 88     | $\pi^*$ (Osazone)                                   |  |  |  |
| 105          | HOMO               | -6.15          | 28             | 34                                                   | 38     | $\pi$ (Osazone) + d <sub>Pt</sub> + p <sub>Cl</sub> |  |  |  |

**Table S4** Excitation energies ( $\lambda$ /nm), oscillator strengths (f), significant contributions (>10%), transition types and dominant contributions of UV-vis-NIR absorption bands of **3** obtained from TD DFT calculations

| ) (nm f ) (nm       |        | ) /mm                | cignificant contributions (> 100%)   | transition types                                                    | dominant                |
|---------------------|--------|----------------------|--------------------------------------|---------------------------------------------------------------------|-------------------------|
| $\lambda_{calc}/mm$ | 1      | λ <sub>exp</sub> /mm | significant contributions (>10%)     |                                                                     | contributions           |
| 472.00              | 0.1016 | 452                  | HOMO-3 $\rightarrow$ LUMO (39%)      | $\pi_{\rm L}(92\%) \to \pi^*_{\ \rm L}(64\%) + d_{\rm Pt} \ (36\%)$ | LMMLCT                  |
| 405.25              | 0.0514 | 354                  | HOMO-5 $\rightarrow$ LUMO (46%)      | $\pi_{\rm L}(95\%) \to \pi^*_{\ \rm L}(64\%) + d_{\rm Pt} \ (36\%)$ | LMMLCT                  |
| 284.90              | 0.0378 | 301                  | $HOMO-3 \rightarrow LUMO + 1 (17\%)$ | $\pi_{\rm L}(92\%) \to \pi^*_{\ \rm L}(89\%)$                       | $\pi \rightarrow \pi^*$ |



**Fig. S7**. FMOs of **1-4**; HOMOs (left column) and LUMOs (right column) (isovalues = 0.06).



**Fig. S8** Absorption spectra of (a)  $\mathbf{1}$  (2.89 x 10<sup>-5</sup> mol L<sup>-1</sup>) and (b)  $\mathbf{3}$  (2.29 x 10<sup>-5</sup> mol L<sup>-1</sup>) in presence of CT-DNA in buffer at 298 K. (The insets show the Benesi-Hildebrand plots of binding).



**Fig. S9** Fluorescence titration data on the displacement of CT-DNA bound ethidium bromide by **1** (Inset shows the Stern-Volmer plot of quenching study).



Fig. S10 Fluorescence titration data on the displacement of CT-DNA bound ethidium bromide

by **3** (Inset shows the Stern-Volmer plot of quenching study).

**Table S5** Comparative study of IC<sub>50</sub> values ( $\mu$ M) among some previously reported<sup>7</sup> palladium

(II) and platinum (II) nitrofurylthiosemicarbazone complexes by Gambino et al. and the

| compounds reported in this article. |               |                        |      |  |  |
|-------------------------------------|---------------|------------------------|------|--|--|
| Compounds                           | Studied       | IC <sub>50</sub> in μM | Comp |  |  |
|                                     | promastigotes | after 48 hrs           |      |  |  |

| Compounds         | Studied       | IC <sub>50</sub> in µM | Compounds                 | Studied       | IC <sub>50</sub> in µM |
|-------------------|---------------|------------------------|---------------------------|---------------|------------------------|
|                   | promastigotes | after 48 hrs           |                           | promastigotes | after 48 hrs of        |
|                   |               | of incubation          |                           |               | incubation             |
|                   | This paper    |                        |                           | Reference 8   |                        |
| $L^{NHPh}H_2$     | Leishmania    | >30                    | [PdCl <sub>2</sub> (HL1)] | T. cruzi      | $2.4 \pm 0.1$          |
| $L^{NH(ClPh)}H_2$ | donavani      | >30                    | [PdCl <sub>2</sub> (HL2)] | Tulahuen 2    | $4.3 \pm 0.1$          |
| 1                 |               | $25.00 \pm 0.06$       | [PdCl <sub>2</sub> (HL3)] |               | $5.9 \pm 0.1$          |
| 2                 |               | >30                    | $[PdCl_2(HL4)]$           |               | >25                    |
| 3                 |               | $19.69 \pm 0.13$       | $[PdCl_2(HL5)]$           |               | $6.4 \pm 0.1$          |
| 4                 |               | >30                    | [PdCl <sub>2</sub> (HL6)] |               | $2.7 \pm 0.1$          |
| Miltefosine       |               | $15.14 \pm 0.81$       | $[PdCl_2(HL7)]$           |               | $2.4 \pm 0.1$          |
|                   | Reference 8   |                        | [PdCl <sub>2</sub> (HL8)] |               | >>25                   |
| L1                | T. cruzi      | $2.7 \pm 0.1$          | [PtCl <sub>2</sub> (HL1)] |               | $6.4 \pm 0.1$          |
| L2                | Tulahuen 2    | $5.0 \pm 0.1$          | [PtCl <sub>2</sub> (HL2)] |               | $13.1 \pm 0.1$         |
| L3                |               | $4.9 \pm 0.1$          | [PtCl <sub>2</sub> (HL3)] |               | $27.5 \pm 0.1$         |
| L4                |               | >25                    | [PtCl <sub>2</sub> (HL4)] |               | $15.0 \pm 0.1$         |
| L5                |               | $3.5 \pm 0.1$          | [PtCl <sub>2</sub> (HL5)] |               | $8.6 \pm 0.1$          |
| L6                |               | $4.5 \pm 0.1$          | [PtCl <sub>2</sub> (HL6)] |               | $10.0 \pm 0.1$         |
| L7                |               | $4.1 \pm 0.1$          | $[PtCl_2(HL7)]$           |               | $13.7 \pm 0.1$         |
| L8                |               | $3.6 \pm 0.1$          | [PtCl <sub>2</sub> (HL8)] |               | >25                    |
|                   |               |                        | Nifurtimox                |               | $6.1 \pm 0.1$          |

# Table S6 Anti-leishmanial activity of the compounds 1 and 3 (at a dose $30\mu M$ )

| Name of         | Activity | vity Cell morphology |                    | Cell m  | notility | Viable cell count (cells/ml) |                      |
|-----------------|----------|----------------------|--------------------|---------|----------|------------------------------|----------------------|
| compounds       | against  | (in 1                | 0µl)               | (in 1   | 0µ1)     |                              |                      |
|                 | UR-6     | 24hrs                | 72hrs              | 24hrs   | 72hrs    | 24hrs                        | 72hrs                |
| Control         | -        | Morphologically      | Morphologically    | Highly  | Highly   | 3x10 <sup>5</sup>            | 8x10 <sup>5</sup>    |
| (without        |          | unchanged            | unchanged          | motile  | motile   |                              |                      |
| SAG)            |          |                      |                    |         |          |                              |                      |
| Control         | -        | Morphologically      | Morphologically    | Highly  | Highly   | 3.1 x10 <sup>5</sup>         | 7.8x10 <sup>5</sup>  |
| (without SAG    |          | unchanged            | unchanged          | motile  | motile   |                              |                      |
| but with 10%    |          | _                    | _                  |         |          |                              |                      |
| DMSO)           |          |                      |                    |         |          |                              |                      |
| SAG             | +        | 20% cells with       | 40% cells with     | 70% non | 80% non  | 4x10 <sup>3</sup>            | 1x10 <sup>3</sup>    |
| (Standard       |          | changed              | changed            | motile  | motile   |                              |                      |
| anti-           |          | morphology and       | morphology and     |         |          |                              |                      |
| leishmanial     |          | the rest remaining   | the rest remaining |         |          |                              |                      |
| drug) (10uM)    |          | unchanged (80%)      | unchanged (60%)    |         |          |                              |                      |
|                 |          |                      |                    |         |          |                              |                      |
| 1 (30µM)        | +        | Morphology           | Morphology         | 70% non | 90% non  | 1x10 <sup>2</sup>            | 7x10 <sup>2</sup>    |
|                 |          | totally changed in   | totally changed in | motile  | motile   |                              |                      |
|                 |          | 80%.                 | 90%                |         |          |                              |                      |
| <b>3</b> (30µM) | +        | Morphology           | Morphology         | 95% non | 99% non  | 5x10                         | 2.2x10               |
|                 |          | totally changed in   | totally changed in | motile  | motile   |                              |                      |
|                 |          | 90%.                 | 99%                |         |          |                              |                      |
| Control         | Against  | Morphologically      | Morphologically    | Highly  | Highly   | 3.6x10 <sup>5</sup>          | 6.25x10 <sup>5</sup> |
| (without        | AG 83    | unchanged            | unchanged          | motile  | motile   |                              |                      |
| SAG)            | -        | C                    | C                  |         |          |                              |                      |
| Control         | -        | Morphologically      | Morphologically    | Highly  | Highly   | 2.7 x10 <sup>5</sup>         | 4.75x10 <sup>5</sup> |
| (without SAG    |          | unchanged            | unchanged          | motile  | motile   |                              |                      |
| but with 10%    |          |                      |                    |         |          |                              |                      |
| DMSO)           |          |                      |                    |         |          |                              |                      |
| SAG             | +        | 30%cells with        | 50% cells with     | 75% non | 90% non  | 2.25x10 <sup>4</sup>         | 1.5x10 <sup>4</sup>  |
| (Standard       |          | changed              | changed            | motile  | motile   |                              |                      |
| anti-           |          | morphology and       | morphology and     |         |          |                              |                      |
| leishmanial     |          | the rest remaining   | the rest remaining |         |          |                              |                      |
| drug) (10uM)    |          | unchanged 70(%)      | unchanged (50%)    |         |          |                              |                      |
|                 |          |                      |                    |         |          |                              |                      |
|                 |          |                      |                    |         |          |                              |                      |
| 1 (30µM)        | +        | No such              | No such            | 80% non | 95% non  | $2x10^{3}$                   | $1.25 \times 10^{3}$ |
|                 |          | distinguishable      | distinguishablecha | motile  | motile   |                              |                      |
|                 |          | change in            | nge in             |         |          |                              |                      |
|                 |          | Morphology.          | Morphology.        |         |          |                              |                      |
|                 |          | Dead cells have      | Dead cells have    |         |          |                              |                      |
|                 |          | become little        | become little      |         |          |                              |                      |
|                 |          | elongated            | elongated          |         |          |                              |                      |
| <b>3</b> (30µM) | +        | No such              | No such            | 90% non | 98% non  | $4.5 \times 10^2$            | $2.5 \times 10^2$    |
|                 |          | distinguishable      | distinguishable    | motile  | motile   |                              |                      |
|                 |          | change in            | change in          |         |          |                              |                      |
|                 |          | Morphology.          | Morphology.        |         |          |                              |                      |
|                 |          | Dead cells have      | Dead cells have    |         |          |                              |                      |
|                 |          | become little        | become little      |         |          |                              |                      |
|                 |          | elongated            | elongated          |         |          |                              |                      |

| Name of the organisms               | MIC        | MIC value in | MIC value in | MIC value    | 10%  |  |  |
|-------------------------------------|------------|--------------|--------------|--------------|------|--|--|
|                                     | value      | $\mu M$      | μΜ           | in µM        | DMSO |  |  |
|                                     | in $\mu M$ |              |              |              |      |  |  |
|                                     | 1          | 3            | Streptomycin | Tetracycline |      |  |  |
| Bacillus subtilis                   | >100       | >100         | 1.4          | 2.2          |      |  |  |
| Staphylococcus aureus               | >100       | >100         | 1.7          | 1.8          | _    |  |  |
| ATCC25923                           |            |              |              |              |      |  |  |
| Klebsiella pneumoniae               | >100       | >100         | 1.5          | 1            |      |  |  |
| Escherichi coli                     | >100       | >100         | 1.4          | 2.2          |      |  |  |
| Salmonella typhi ATCC 34            | >100       | >100         | 8.6          | 1.8          |      |  |  |
| Pseudomonas aeruginosa<br>ATCC27853 | >100       | >100         | 1.2          | 6.8          | _    |  |  |
| Vibrio cholera                      | >100       | >100         | 10.3         | 1.8          |      |  |  |
| Salmonella typhimurium              | >100       | >100         | 0.7          | 1.6          |      |  |  |
| Enterococcus faecalis               | >100       | >100         | 1.2          | 1.8          |      |  |  |
| Shigella dysenteriae                | >100       | >100         | 1.5          | 1.6          |      |  |  |
| Proteus vulgaris                    | >100       | >100         | 1.4          | 2.2          |      |  |  |
|                                     |            |              |              |              |      |  |  |

 Table S7 Determination of minimum inhibitory concentration (MIC) of 1 and 3 in bacterial system

## Table S8 The antifungal activity (MIC) of $1 \mbox{ and } 3$

| Name of organisms        | MIC value in µM |      |          |      |  |
|--------------------------|-----------------|------|----------|------|--|
|                          | 1               | 3    | Nystatin | DMSO |  |
| Aspergillus oryzae       | >100            | 108  | 8.6      | _    |  |
| Aspergillus niger        | >100            | >100 | 4.3      |      |  |
| Saccharomyces cerevisiae | >100            | >100 | 8.6      |      |  |
| Penicillium chrysogenum  | >100            | >100 | 108      |      |  |

| Center | Atomic | e A | tomic     | Coordinates | s (Angstroms) |
|--------|--------|-----|-----------|-------------|---------------|
| number | numt   | ber | type      | X Y         | Z             |
| 1      | 7      | 0   | 1.168845  | 0.649005    | 1.350385      |
| 2      | 7      | 0   | 3.074175  | -1.156236   | 0.945605      |
| 3      | 6      | 0   | 2.280270  | 1.054233    | 0.790182      |
| 4      | 1      | 0   | 2.429896  | 2.084447    | 0.484870      |
| 5      | 6      | 0   | 3.313738  | 0.074345    | 0.569822      |
| 6      | 1      | 0   | 4.247061  | 0.362186    | 0.097621      |
| 7      | 17     | 0   | -1.056681 | -1.391072   | 2.460706      |
| 8      | 17     | 0   | 1.392432  | -3.710852   | 1.943322      |
| 9      | 7      | 0   | 3.916443  | -2.194012   | 0.841282      |
| 10     | 1      | 0   | 3.428860  | -3.069824   | 1.042351      |
| 11     | 7      | 0   | 0.108571  | 1.411985    | 1.646368      |
| 12     | 1      | 0   | -0.687075 | 0.830165    | 1.917719      |
| 13     | 6      | 0   | -1.299007 | 3.210034    | 0.870845      |
| 14     | 6      | 0   | -0.066072 | 2.790254    | 1.396492      |
| 15     | 6      | 0   | 0.909189  | 3.744261    | 1.731960      |
| 16     | 6      | 0   | 0.653737  | 5.099983    | 1.517995      |
| 17     | 6      | 0   | -0.571559 | 5.519261    | 0.990556      |
| 18     | 6      | 0   | -1.549038 | 4.569089    | 0.678700      |
| 19     | 1      | 0   | -2.050924 | 2.468089    | 0.615230      |
| 20     | 1      | 0   | 1.840280  | 3.436127    | 2.196597      |
| 21     | 1      | 0   | 1.411075  | 5.832344    | 1.784904      |
| 22     | 1      | 0   | -0.765312 | 6.576279    | 0.831842      |
| 23     | 1      | 0   | -2.507163 | 4.883486    | 0.273857      |
| 24     | 6      | 0   | 5.489604  | -3.274355   | -0.635440     |
| 25     | 6      | 0   | 6.762056  | -3.379028   | -1.198081     |
| 26     | 6      | 0   | 7.742194  | -2.423196   | -0.913296     |
| 27     | 6      | 0   | 7.446133  | -1.370944   | -0.041243     |
| 28     | 6      | 0   | 6.182448  | -1.266001   | 0.542886      |
| 29     | 6      | 0   | 5.192190  | -2.214052   | 0.236198      |
| 30     | 1      | 0   | 4.721072  | -4.007079   | -0.867203     |
| 31     | 1      | 0   | 6.982602  | -4.204677   | -1.869203     |
| 32     | 1      | 0   | 8.729493  | -2.501861   | -1.359478     |
| 33     | 1      | 0   | 8.208370  | -0.636274   | 0.204529      |
| 34     | 1      | 0   | 5.983593  | -0.480054   | 1.264413      |
| 25     | 46     | 0   | 1 151/75  | 1 103683    | 1 700613      |

## Table S9 Optimized coordinates of 1

| Center | Atomic | Atomic | Coordinates (Angstroms) |          |          |
|--------|--------|--------|-------------------------|----------|----------|
| number | number | type   |                         |          |          |
|        |        |        | Х                       | Y        | Z        |
| 1      | 46     | 0      | 1.267981                | -1.2518  | 2.241993 |
| 2      | 7      | 0      | 1.177922                | 0.629537 | 1.339146 |
| 3      | 7      | 0      | 3.132822                | -1.16058 | 1.33274  |
| 4      | 6      | 0      | 2.258645                | 0.91686  | 0.659611 |
| 5      | 1      | 0      | 2.358508                | 1.838501 | 0.095134 |
| 6      | 6      | 0      | 3.319603                | -0.06063 | 0.655441 |
| 7      | 1      | 0      | 4.241431                | 0.126044 | 0.110678 |
| 8      | 17     | 0      | -0.88178                | -1.08025 | 3.119221 |
| 9      | 17     | 0      | 1.63902                 | -3.38506 | 3.09462  |
| 10     | 7      | 0      | 4.060217                | -2.13078 | 1.48138  |
| 11     | 1      | 0      | 3.625569                | -2.9714  | 1.870556 |
| 12     | 7      | 0      | 0.084782                | 1.396246 | 1.433832 |
| 13     | 1      | 0      | -0.6723                 | 0.899176 | 1.911276 |
| 14     | 6      | 0      | -1.2678                 | 3.217385 | 0.568363 |
| 15     | 6      | 0      | -0.04368                | 2.753525 | 1.091984 |
| 16     | 6      | 0      | 0.981111                | 3.68924  | 1.31981  |
| 17     | 6      | 0      | 0.797112                | 5.036187 | 1.014443 |
| 18     | 6      | 0      | -0.42075                | 5.479864 | 0.490239 |
| 19     | 6      | 0      | -1.45644                | 4.568855 | 0.278179 |
| 20     | 1      | 0      | 1.911104                | 3.360626 | 1.771938 |
| 21     | 1      | 0      | 1.601066                | 5.741466 | 1.204896 |
| 22     | 1      | 0      | -0.56979                | 6.529142 | 0.253161 |
| 23     | 1      | 0      | -2.41188                | 4.894481 | -0.12046 |
| 24     | 6      | 0      | 5.110051                | -2.8098  | -0.66157 |
| 25     | 6      | 0      | 6.247447                | -2.91292 | -1.46583 |
| 26     | 6      | 0      | 7.472146                | -2.43018 | -0.99888 |
| 27     | 6      | 0      | 7.567351                | -1.8504  | 0.269329 |
| 28     | 6      | 0      | 6.428876                | -1.75388 | 1.070838 |
| 29     | 6      | 0      | 5.191521                | -2.23018 | 0.618554 |
| 30     | 1      | 0      | 6.167842                | -3.37253 | -2.44573 |
| 31     | 1      | 0      | 8.353075                | -2.51571 | -1.6291  |
| 32     | 1      | 0      | 8.521621                | -1.48347 | 0.635666 |
| 33     | 1      | 0      | 6.478072                | -1.32199 | 2.066266 |
| 34     | 17     | 0      | -2.58016                | 2.093252 | 0.290835 |
| 35     | 17     | 0      | 3.584391                | -3.42506 | -1.25003 |

## Table S10 Optimized coordinates of 2

| Center | Atomic | Atomic Coordinates (Angstroms) |           |           | stroms)   |
|--------|--------|--------------------------------|-----------|-----------|-----------|
| number | number | type                           | Х         | Y         | Z         |
| 1      | 78     | 0                              | 1.233200  | -1.377852 | 1.938873  |
| 2      | 7      | 0                              | 1.260092  | 0.641015  | 1.613700  |
| 3      | 7      | 0                              | 3.132732  | -1.132155 | 1.225988  |
| 4      | 6      | 0                              | 2.368221  | 1.070895  | 1.057991  |
| 5      | 1      | 0                              | 2.505129  | 2.109790  | 0.781366  |
| 6      | 6      | 0                              | 3.398149  | 0.094150  | 0.843543  |
| 7      | 1      | 0                              | 4.349214  | 0.361510  | 0.397529  |
| 8      | 17     | 0                              | -1.009776 | -1.400318 | 2.646754  |
| 9      | 17     | 0                              | 1.435557  | -3.710483 | 2.149585  |
| 10     | 7      | 0                              | 4.005153  | -2.168337 | 1.163762  |
| 11     | 1      | 0                              | 3.499679  | -3.045065 | 1.306477  |
| 12     | 7      | 0                              | 0.206454  | 1.421036  | 1.949199  |
| 13     | 1      | 0                              | -0.603645 | 0.832525  | 2.153836  |
| 14     | 6      | 0                              | -1.113197 | 3.013045  | 0.667813  |
| 15     | 6      | 0                              | 0.001758  | 2.743763  | 1.474406  |
| 16     | 6      | 0                              | 0.854200  | 3.788196  | 1.863992  |
| 17     | 6      | 0                              | 0.601813  | 5.088838  | 1.424326  |
| 18     | 6      | 0                              | -0.509680 | 5.360022  | 0.618996  |
| 19     | 6      | 0                              | -1.370202 | 4.321448  | 0.251690  |
| 20     | 1      | 0                              | -1.770164 | 2.199023  | 0.372894  |
| 21     | 1      | 0                              | 1.684779  | 3.585944  | 2.534233  |
| 22     | 1      | 0                              | 1.262574  | 5.895343  | 1.730903  |
| 23     | 1      | 0                              | -0.707963 | 6.375659  | 0.288065  |
| 24     | 1      | 0                              | -2.239223 | 4.525244  | -0.367994 |
| 25     | 6      | 0                              | 5.236223  | -3.039271 | -0.751022 |
| 26     | 6      | 0                              | 6.401182  | -3.098911 | -1.519791 |
| 27     | 6      | 0                              | 7.493092  | -2.283265 | -1.209008 |
| 28     | 6      | 0                              | 7.425158  | -1.418535 | -0.111203 |
| 29     | 6      | 0                              | 6.273269  | -1.368751 | 0.676036  |
| 30     | 6      | 0                              | 5.170659  | -2.171602 | 0.348241  |
| 31     | 1      | 0                              | 4.378302  | -3.659895 | -0.995976 |
| 32     | 1      | 0                              | 6.449961  | -3.777548 | -2.367045 |
| 33     | 1      | 0                              | 8.395403  | -2.327190 | -1.812649 |
| 34     | 1      | 0                              | 8.278564  | -0.797313 | 0.147199  |
| 35     | 1      | 0                              | 6.236305  | -0.738585 | 1.560195  |
|        |        |                                |           |           |           |

## Table S11 Optimized coordinates of 3

Table S12 Optimized coordinates of 4

| Center | Atomic | Atom | tomic Coordinates (Angstroms) |           |           |  |
|--------|--------|------|-------------------------------|-----------|-----------|--|
| number | number | type | Х                             | Y         | Z         |  |
|        |        |      |                               |           |           |  |
| 1      | 78     | 0    | 1.325952                      | -1.207779 | 2.450371  |  |
| 2      | 7      | 0    | 1.320552                      | 0.735065  | 1.827972  |  |
| 3      | 7      | 0    | 3.130083                      | -1.101883 | 1.502121  |  |
| 4      | 6      | 0    | 2.373175                      | 1.074684  | 1.126173  |  |
| 5      | 1      | 0    | 2.486608                      | 2.071760  | 0.713735  |  |
| 6      | 6      | 0    | 3.373489                      | 0.058932  | 0.946305  |  |
| 7      | 1      | 0    | 4.286516                      | 0.245196  | 0.390610  |  |
| 8      | 17     | 0    | -0.805792                     | -1.069172 | 3.428288  |  |
| 9      | 17     | 0    | 1.561003                      | -3.479820 | 2.995307  |  |
| 10     | 7      | 0    | 4.005847                      | -2.142130 | 1.490720  |  |
| 11     | 1      | 0    | 3.520867                      | -2.997660 | 1.773694  |  |
| 12     | 7      | 0    | 0.320322                      | 1.594366  | 2.150804  |  |
| 13     | 1      | 0    | -0.482813                     | 1.068239  | 2.505505  |  |
| 14     | 6      | 0    | -0.490382                     | 2.815718  | 0.145264  |  |
| 15     | 6      | 0    | 0.115480                      | 2.800161  | 1.416142  |  |
| 16     | 6      | 0    | 0.509427                      | 4.013371  | 1.994995  |  |
| 17     | 6      | 0    | 0.307797                      | 5.222430  | 1.327321  |  |
| 18     | 6      | 0    | -0.293657                     | 5.222749  | 0.065805  |  |
| 19     | 6      | 0    | -0.695425                     | 4.023085  | -0.526343 |  |
| 20     | 1      | 0    | 0.963559                      | 3.984918  | 2.981219  |  |
| 21     | 1      | 0    | 0.612221                      | 6.155938  | 1.791378  |  |
| 22     | 1      | 0    | -0.459282                     | 6.158223  | -0.461490 |  |
| 23     | 1      | 0    | -1.172104                     | 4.016412  | -1.501305 |  |
| 24     | 6      | 0    | 4.823680                      | -2.660092 | -0.795288 |  |
| 25     | 6      | 0    | 5.879010                      | -2.740411 | -1.706903 |  |
| 26     | 6      | 0    | 7.165370                      | -2.365786 | -1.312115 |  |
| 27     | 6      | 0    | 7.403700                      | -1.918111 | -0.009617 |  |
| 28     | 6      | 0    | 6.346900                      | -1.845231 | 0.899097  |  |
| 29     | 6      | 0    | 5.049266                      | -2.212064 | 0.520085  |  |
| 30     | 1      | 0    | 5.687929                      | -3.097929 | -2.713664 |  |
| 31     | 1      | 0    | 7.981806                      | -2.432368 | -2.025962 |  |
| 32     | 1      | 0    | 8.405879                      | -1.636324 | 0.299761  |  |
| 33     | 1      | 0    | 6.507060                      | -1.516996 | 1.922035  |  |
| 34     | 17     | 0    | -1.008602                     | 1.322487  | -0.598131 |  |
| 35     | 17     | 0    | 3.219245                      | -3.136198 | -1.295370 |  |

| Center | Atomic | Atomic Coo |           | ordinates (Angstroms) |           |
|--------|--------|------------|-----------|-----------------------|-----------|
| number | number | type       | Х         | Y                     | Ζ         |
| 1      | 78     | 0          | 1.071240  | -1.290535             | 0.860808  |
| 2      | 7      | 0          | 0.755480  | 0.482766              | -0.055422 |
| 3      | 7      | 0          | 2.584399  | -1.276506             | -0.477739 |
| 4      | 6      | 0          | 1.558302  | 0.710524              | -1.116071 |
| 5      | 1      | 0          | 1.408800  | 1.591969              | -1.730991 |
| 6      | 6      | 0          | 2.550820  | -0.241970             | -1.343625 |
| 7      | 1      | 0          | 3.269056  | -0.190220             | -2.155390 |
| 8      | 17     | 0          | -0.874768 | -1.081631             | 2.255335  |
| 9      | 17     | 0          | 1.628795  | -3.477237             | 1.684597  |
| 10     | 7      | 0          | 3.585991  | -2.238754             | -0.623930 |
| 11     | 1      | 0          | 3.198093  | -3.126880             | -0.304806 |
| 12     | 7      | 0          | -0.236646 | 1.417937              | 0.247389  |
| 13     | 1      | 0          | -1.011707 | 0.906648              | 0.670632  |
| 14     | 6      | 0          | -0.940163 | 3.342504              | 1.525862  |
| 15     | 6      | 0          | 0.108723  | 2.557939              | 1.007163  |
| 16     | 6      | 0          | 1.433527  | 2.971763              | 1.220316  |
| 17     | 6      | 0          | 1.693700  | 4.148638              | 1.928026  |
| 18     | 6      | 0          | 0.653465  | 4.931043              | 2.436799  |
| 19     | 6      | 0          | -0.667807 | 4.511003              | 2.233024  |
| 20     | 1      | 0          | -1.968060 | 3.021143              | 1.371827  |
| 21     | 1      | 0          | 2.250794  | 2.362661              | 0.851844  |
| 22     | 1      | 0          | 2.727458  | 4.447051              | 2.090821  |
| 23     | 1      | 0          | 0.864958  | 5.843455              | 2.988946  |
| 24     | 1      | 0          | -1.494057 | 5.096411              | 2.631573  |
| 25     | 6      | 0          | 5.760166  | -3.069157             | 0.025034  |
| 26     | 6      | 0          | 7.047983  | -2.877594             | 0.519709  |
| 27     | 6      | 0          | 7.469394  | -1.609913             | 0.942754  |
| 28     | 6      | 0          | 6.568924  | -0.543561             | 0.870990  |
| 29     | 6      | 0          | 5.272687  | -0.723863             | 0.380408  |
| 30     | 6      | 0          | 4.855524  | -1.992242             | -0.054164 |
| 31     | 1      | 0          | 5.438746  | -4.056103             | -0.300880 |
| 32     | 1      | 0          | 7.726841  | -3.726058             | 0.578872  |
| 33     | 1      | 0          | 8.475020  | -1.461322             | 1.328435  |
| 34     | 1      | 0          | 6.869599  | 0.445161              | 1.211928  |
| 35     | 1      | 0          | 4.577700  | 0.107297              | 0.352831  |

| Table S13 | Optimized coordin | nates of $[3]^{-}$ |
|-----------|-------------------|--------------------|
|-----------|-------------------|--------------------|

| Center | Atomic  | Ato  | mic Coo   | rdinates (Ar | ngstroms) |
|--------|---------|------|-----------|--------------|-----------|
| number | number  | type | Х         | Y            | Ζ         |
|        | 78      | 0    | 1 860231  | -0 877379    | 1 746194  |
| 2      | 70<br>7 | 0    | 1 901891  | 1 090206     | 1 275606  |
| 3      | ,<br>7  | 0    | 2.826012  | -0.928664    | -0.033045 |
| 4      | 6       | 0    | 2.525245  | 1.382092     | 0.114641  |
| 5      | 1       | 0    | 2.600072  | 2.406673     | -0.234650 |
| 6      | 6       | 0    | 3.017126  | 0.287698     | -0.590860 |
| 7      | 1       | 0    | 3.536070  | 0.364864     | -1.540827 |
| 8      | 17      | 0    | 0.737826  | -0.471587    | 3.845040  |
| 9      | 17      | 0    | 1.882838  | -3.244352    | 2.026277  |
| 10     | 7       | 0    | 3.406526  | -2.024566    | -0.675608 |
| 11     | 1       | 0    | 2.753164  | -2.804553    | -0.667222 |
| 12     | 7       | 0    | 1.417778  | 2.104161     | 2.086723  |
| 13     | 1       | 0    | 1.154955  | 1.686755     | 2.984302  |
| 14     | 6       | 0    | -0.406462 | 3.021746     | 0.575311  |
| 15     | 6       | 0    | 0.537665  | 3.111383     | 1.622944  |
| 16     | 6       | 0    | 0.617191  | 4.341539     | 2.311135  |
| 17     | 6       | 0    | -0.182749 | 5.430401     | 1.980493  |
| 18     | 6       | 0    | -1.074801 | 5.336365     | 0.906196  |
| 19     | 6       | 0    | -1.177911 | 4.131598     | 0.211364  |
| 20     | 1       | 0    | 1.349310  | 4.413161     | 3.111282  |
| 21     | 1       | 0    | -0.090999 | 6.356994     | 2.542074  |
| 22     | 1       | 0    | -1.689884 | 6.184055     | 0.615368  |
| 23     | 1       | 0    | -1.886474 | 4.023502     | -0.604632 |
| 24     | 6       | 0    | 5.255635  | -3.613238    | -0.766714 |
| 25     | 6       | 0    | 6.559445  | -3.996378    | -0.464289 |
| 26     | 6       | 0    | 7.364255  | -3.168268    | 0.322761  |
| 27     | 6       | 0    | 6.836359  | -1.965222    | 0.801435  |
| 28     | 6       | 0    | 5.528605  | -1.588845    | 0.501023  |
| 29     | 6       | 0    | 4.703631  | -2.405107    | -0.294656 |
| 30     | 1       | 0    | 6.934141  | -4.941594    | -0.845997 |
| 31     | 1       | 0    | 8.381812  | -3.466574    | 0.561115  |
| 32     | 1       | 0    | 7.441041  | -1.316080    | 1.430370  |
| 33     | 1       | 0    | 5.114977  | -0.669363    | 0.898398  |
| 34     | 17      | 0    | -0.732662 | 1.516175     | -0.260989 |
| 35     | 17      | 0    | 4.272835  | -4.683817    | -1.772040 |

**Table S14** Optimized coordinates of  $[4]^-$ 

### References

- (a) S. Stoll, Chapter Six- CW-EPR Spectral Simulations: Solid State. *Methods Enzymol.* 2015, 563, 121-142; (b) S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in *EPR. J. Magn. Reson.* 2006, 178, 42-55.
- (a) G. M. Sheldrick, ShelXS97, UniversitätGöttingen, Göttingen, Germany, 1997; (b)
   G. M. Sheldrick, ShelXL97, UniversitätGöttingen, Göttingen, Germany, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, J. A. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
- 4. (a) D. R. Salahub and M. C. Zerner, *The Challenge of d and f Electrons*, ACS, Washington, D.C., 1989; (b) R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, UK, 1989; (c) W. Kohn and L. J. Sham, *Phys. Rev.*, 1965, 140, A1133-A1138; (d) P. Hohenberg and W. Kohn, *Phys. Rev.*, 1964, 136, B864-B871.

- (a) R. E. Stratmann, G. E. Scuseria and M. Frisch, J. Chem. Phys., 1998, 109, 8218-8224; (b) M. E. Casida, C. Jamoroski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449; (c) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454-464.
- 6. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200-206; (c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 7. P. Pulay, J. Comput. Chem., 1982, 3, 556-560.
- H. B. Schlegel and J. J. McDouall, in *Computational Advances in Organic Chemistry*,
   C. Ogretir and I. G. Csizmadia, Kluwer Academic, Ed.The Netherlands, 1991, 167.
- 9. (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283; (b) W. R. Wadt and
  P. J. Hay, J. Chem. Phys., 1985, 82, 284-298; (c) P. J. Hay and W. R. Wadt, J. Chem.
  Phys., 1985, 82, 299-310.
- 10. (a) V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, *J. Comp. Chem.*, 2001, 22, 976-984; (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, M. S. Gordon, *J. Chem. Phys.*, 1982,77, 3654-3665; (c) P. C. Hariharan, J. A. Pople, *Mol. Phys.* 1974, 27, 209-214; (d) P. C. Hariharan, J. A. Pople, *Theo. Chim. Acta.*, 1973, 28, 213-222; (e) W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phy.*, 1972, 56, 2257-2261.
- (a) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294-301; (b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213-222.
- 12. N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comp. Chem., 2008, 29, 839-845.
- 13. (a) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 2003, 24, 669-681;
  (b) V. Barone, M. Cossi, J. Phys. Chem. A., 1998, 102, 1995-2001.