Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information for:

Quantum Chemical Evidence for the Origin of the Red/Blue Colors of Hydrangea macrophylla Sepals

Xue Li,¹ Farhan Siddique,¹ Gustavo T. Medeiros Silva,² Frank H. Quina,^{*2} Hans Lischka,^{1,3} Adelia J. A. Aquino^{*1,3,4}

¹School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China

²Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-030, Brazil

³Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States

⁴Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria

Contents:

pp. 3: Figure S1. MP2/def2-TZVP optimized geometries of the ground state of the methoxy analog (2), of the corresponding neutral binary complexes with Al(III) (2/Al).

pp. 3: Figure S2. B3-LYP/def2-TZVP optimized geometries of the ground states of two possible relative orientations of the copigment 3 in binary complexes with the methoxy ether analog of 3-O-glucosyl delphinidin (2).

pp. 4: Figure S3. The four different optimized structures using B3-LYP/def2-TZVP in gas phase for the ternary anthocyanin-Al(III)-copigment complexes, varying the diaquo ligand coordination to aluminum(III) (denoted cis and trans) and the orientation of the anthocyanin (methoxy ether analog of 3-O-glucosyl delphinidin) relative to the copigment.

pp. 5-7: Tables S1 and S2. Calculated TDDFT and ADC(2) in vacuum and COSMO water excitation energies ΔE (in eV), and maximum wavelength λ_{max} (in nm), and oscillator strength f for the different systems investigated in this work.

Figure S1. MP2/def2-TZVP optimized geometries of the ground state of the methoxy analog (2), and the corresponding neutral binary complexes with Al(III) (2/Al). Atom color scheme: blue = Al, red = O, white = H, and gray = C.

Side view

Top view

Binary Complex VIII of 2 and 3

Figure S2. B3-LYP/def2-TZVP optimized geometries of the ground states of two possible relative orientations of the copigment 3 in binary complexes with the methoxy ether analog of 3-O-glucosyl delphinidin (2). Atom color scheme: red = O, white = H, and gray = C;

Figure S3. The four different optimized structures using B3-LYP/def2-TZVP in gas phase for the ternary anthocyanin-Al(III)-copigment complexes, varying the diaquo ligand coordination to aluminum(III) (denoted cis and trans) and the orientation of the anthocyanin (methoxy ether analog of 3-O-glucosyl delphinidin) relative to the copigment. Atom color scheme: blue = Al, red = O, white = H, and gray = C.

Table S1. Calculated TDDFT and ADC(2) (in vacuum and COSMO water) excitation energies ΔE (in eV), and maximum wavelength λ_{max} (in nm) and oscillator strength f of the delphindin cations 1 and 2, of the corresponding neutral binary delphinidin-Al complexes(1/Al and 2/Al) and of the copigment 3.

			DFT		ADC(2)				
		Vacuu	Water		Vacuum		Water		
system	state	ΔE	f	ΔE	f	ΔE	f	ΔΕ	f
system	state	(eV, nm)	J	(eV, nm)	J	(eV, nm)	J	(eV, nm)	J
3-O-	S_1	2.39, 519	0.07	2.54, 488	0.52	2.27, 547	0.52	2.44, 509	0.58
	S_2	2.55, 485	0.41	2.62, 473	0.06	2.67, 464	0.03	2.89, 429	0.03
	S_3	2.69, 462	0.01	2.86, 433	0.06	2.85, 436	0.01	3.11, 398	0.02
	S_4	2.83, 439	0.03	3.55, 350	0.00	3.56, 348	0.08	3.75, 331	0.08
glucosyl	S_5	2.91, 426	0.00	3.62, 343	0.08	3.61, 343	0.00	4.30, 288	0.00
delphindin	S_6	3.23, 384	0.00	3.85, 322	0.00	4.00, 310	0.01	4.62, 268	0.02
(1)	S_7	3.35, 370	0.00	4.23, 293	0.00	4.40, 282	0.00	4.73, 262	0.32
	S_8	3.55, 349	0.08	4.28, 289	0.02	4.54, 273	0.05	4.92, 252	0.24
	S 9	3.92, 316	0.00	4.30, 288	0.11	4.60, 270	0.10	5.05, 246	0.02
	S_{10}	4.17, 297	0.12	4.47, 277	0.05	4.65, 267	0.00	5.26, 236	0.04
	S_1	2.49, 497	0.07	2.50, 497	0.53	2.30, 539	0.62	2.38, 521	0.58
	S_2	2.56, 484	0.43	2.75, 451	0.01	2.76, 450	0.01	3.04, 408	0.10
	S_3	2.91, 426	0.14	2.94, 422	0.24	2.92, 425	0.02	3.19, 388	0.02
3-O-	S_4	3.66, 339	0.04	3.66, 339	0.03	3.82, 324	0.03	3.86, 321	0.03
methyl	S_5	4.29, 289	0.04	4.33, 286	0.01	4.55, 272	0.04	4.52, 274	0.01
delphindin	S_6	4.47, 277	0.04	4.52, 274	0.16	4.75, 261	0.25	4.74, 262	0.45
(2)	S_7	4.55, 273	0.06	4.77, 260	0.01	4.98, 249	0.18	5.17, 240	0.10
	S_8	4.74, 262	0.13	4.78, 260	0.24	5.07, 245	0.02	5.22, 237	0.01
	S ₉	5.11, 243	0.25	5.15, 241	0.22	5.32, 233	0.15	5.48, 226	0.11
	S10	5.16, 240	0.06	5.19, 239	0.05	5.62, 221	0.27	5.63, 220	0.02
	S1	2.04, 608	0.10	2.34, 529	0.51	1.92, 646	0.35	2.01.616	0.77
	S ₂	2.55.486	0.65	2.59.478	0.42	2.45. 506	0.51	2.68.462	0.07
3-0-	S3	3.22, 385	0.00	3.02. 411	0.01	3.58.347	0.06	3.19.389	0.02
glucosyl	S4	3.24, 383	0.07	3.64.341	0.05	3.64.341	0.03	3.94, 315	0.05
Delphinidi	S5	3 34 372	0.01	3 86 322	0.06	3 67 338	0.04	4 12 301	0.05
<u>n</u> –	S ₆	3 51 353	0.00	3 88 320	0.00	4 03 308	0.00	4 38 283	0.00
Aluminu m (III) (1/Al)	S7	3 60 344	0.00	4 14 300	0.00	4 15 299	0.02	4 72 263	0.05
	S.	3 91 317	0.08	4 22 294	0.00	4 33 286	0.00	4 73 262	0.01
	So	3 97 312	0.00	4 25 292	0.00	4 46 278	0.00	4 75 261	0.01
	S10	4 02 308	0.02	4 29 289	0.00	4 54 273	0.11	4.97.250	0.10
	S10	2 10 590	0.05	237523	0.59	1 94 640	0.01	1.96, 632	0.00
3-0-	S ₂	2.10, 570	0.10	2.57, 525	0.34	2 45 507	0.50	2 63 471	0.70
	52 S2	3 23 384	0.00	2.39, 400	0.07	3 56 349	0.07	3 10 400	0.00
methyl	S,	3 33 373	0.00	3 68 337	0.07	3 71 334	0.00	3 92 317	0.01
Delphinidi n- Aluminu m(III)	54 S-	3 14 361	0.00	3 96 313	0.02	3 77 329	0.00	1 31 288	0.04
	55 56	3 68 337	0.04	1 16 298	0.00	4 12 301	0.02	4.0 282	0.00
	50 Sa	3.80, 337	0.01	4.10, 298	0.00	4.12, 301	0.00	4 71 263	0.00
	5/ So	3.62, 323	0.00	4.29, 289	0.00	4.19, 290	0.02	4.71,203	0.09
(2/Al)	58 So	<i>1</i> 05 306	0.02	4.40, 282	0.00	4.44, 279	0.01	4.80, 258	0.00
	59 Sto	4.05, 300	0.01	4.40, 278	0.01	4.55, 274	0.02	4.09, 234	0.09
	S10 S1	4.13, 299	0.00	4.33, 273	0.02	4.03, 207	0.07	4 15 200	0.02
Copigmen t: 5-O-	51	3.31, 373	0.00	3.09, 330	0.47	4.51, 200	0.41	4.15, 299	0.00
	52 Sa	3.33, 372	0.15	4.27,291	0.52	4.02, 200	0.21	4.50, 272	0.15
	53	5.80, 520	0.00	4.78,239	0.00	4.72,203	0.01	4.95, 251	0.00
	54 S	3.90, 318	0.00	4.92,232	0.00	5.01, 221	0.79	5.52, 225 5.07, 209	0.09
	55	3.92, 310	0.01	5.09, 244	0.40	5.89, 210	0.00	5.97,208	0.00
carreoyr	36 S	4.00, 310	0.36	5.17, 240	0.00	0.01, 200	0.00	0.23, 199	0.00
quinic	57	4.18, 29/	0.00	5.30, 231	0.00	0.22, 199	0.06	0.25, 198	0.10
acia (3)	58 C	4.39, 282	0.01	5.63, 220	0.08	0.38, 194	0.11	0.53, 190	0.05
	S 9	4.46, 278	0.00	5./1, 21/	0.01	6.55, 189	0.01	6.57, 189	0.00
	S_{10}	4.58, 271	0.02	5.79, 214	0.01	6.63, 187	0.01	6.87, 181	0.20

Table S2. Calculated TDDFT (in vacuum) and ADC(2) (in vacuum and in water) excitation energies ΔE (in eV), and maximum wavelength λ_{max} (in nm) and oscillator strength *f* of the binary complexes of the delphinidin cations 1 and 2 with the copigment 3 without aluminum and of the neutral ternary complexes 1/Al/3 and 2/Al(III)/3.

		TDDFT				ADC(2)				
		Vacuum		Wate	Water		Vacuum		Water	
avatam	atata	ΔE	r	ΔΕ	£	ΔE	£	ΔE	£	
system	state	(eV, nm)	J	(eV, nm)	J	(eV, nm)	J	(eV, nm)	J	
Binary Copigmen t Complex V of 1 and 3 without Al	S_1	2.29, 542	0.03	2.19, 566	0.02	2.30, 540	0.41	2.35, 528	0.47	
	S_2	2.55, 487	0.06	2.55, 486	0.39	2.71, 457	0.01	2.82, 439	0.02	
	S_3	2.59, 479	0.26	2.59, 478	0.06	2.79, 444	0.00	2.85, 435	0.01	
	S_4	2.82, 439	0.06	2.83, 438	0.05	2.91, 427	0.01	2.91, 427	0.00	
	S_5	3.05, 407	0.00	3.10, 399	0.00	3.55, 349	0.05	3.65, 340	0.03	
	S6	3.15, 394	0.00	3.31, 375	0.00	3.81, 325	0.00	3.80, 327	0.00	
	S7	3.38, 367	0.02	3.40, 365	0.05	3.94, 315	0.00	3.87. 320	0.44	
	S8	3 46 358	0.00	3 59 346	0.19	4 03 308	0.33	4 03 308	0.02	
	So	3 51 354	0.00	3 65 339	0.05	4 31 288	0.02	4 33 286	0.01	
	S10	3 60 344	0.00	3 72 333	0.05	4 33 286	0.02	4 48 277	0.01	
	S10	2 30 538	0.01	2 26 550	0.00	$\frac{1,33,200}{2.02,615}$	0.50	2 27 547	0.52	
	S1 S2	2.50, 558	0.01	2.20, 330	0.02	2.02, 015	0.00	2.27, 347	0.02	
Binary	52 Sa	2.40, 505	0.12	2.30, 490	0.52	2.45, 500	0.01	2.73, 434	0.03	
Copigmen	53 5	2.40, 499	0.54	2.01, 475	0.00	2.79,443	0.01	2.04, 437	0.01	
t Complex	54 S	2.88,430	0.00	2.65, 455	0.04	3.07, 404	0.01	2.94, 422	0.01	
VI of 1	55	3.18, 390	0.01	3.20, 388	0.04	3.04, 341	0.07	3.08, 337	0.08	
and 3	S6	3.20, 388	0.00	3.39, 366	0.02	4.19, 296	0.27	3.68, 337	0.06	
without	S7	3.29, 377	0.00	3.46, 358	0.00	4.22, 294	0.02	3.93, 316	0.62	
Al	S ₈	3.46, 358	0.04	3.62, 343	0.01	4.23, 293	0.08	4.01, 309	0.00	
	S9	3.52, 352	0.01	3.70, 335	0.53	4.27, 290	0.33	4.45, 279	0.03	
	S_{10}	3.61, 343	0.04	3.77, 329	0.00	4.29, 289	0.01	4.50, 276	0.01	
	S_1	2.36, 526	0.05	2.27, 545	0.03	2.38, 521	0.39	2.41, 515	0.44	
Binary	S_2	2.48, 501	0.25	2.48, 501	0.44	2.75, 451	0.05	2.81, 442	0.06	
Copigmen	S_3	2.57, 483	0.04	2.66, 466	0.01	2.85, 436	0.03	2.99, 415	0.02	
t Complex VII of 2 and 3 without Al	S_4	2.86, 434	0.16	2.88, 430	0.14	3.17, 391	0.05	3.31, 374	0.06	
	S_5	3.19, 388	0.00	3.13, 396	0.00	3.52, 353	0.01	3.53, 352	0.01	
	S_6	3.46, 359	0.01	3.46, 359	0.01	3.76, 330	0.02	3.89, 319	0.02	
	S_7	3.46, 358	0.00	3.63, 341	0.02	4.13, 300	0.00	4.15, 299	0.36	
	S_8	3.56, 349	0.02	3.77, 329	0.35	4.34, 286	0.20	4.45, 279	0.05	
	S 9	3.81, 325	0.00	3.81, 326	0.00	4.50, 275	0.03	4.51, 275	0.05	
	S_{10}	3.92, 317	0.00	4.00, 310	0.04	4.54, 273	0.01	4.54, 273	0.05	
	S_1	2.26, 549	0.09	2.20, 564	0.05	2.11, 588	0.33	2.26, 550	0.41	
Binary Copigmen t Complex	S_2	2.45, 507	0.07	2.51, 493	0.35	2.59, 478	0.01	2.88, 430	0.08	
	S3	2.58, 480	0.22	2.79, 444	0.02	2.70, 459	0.09	2.92, 425	0.08	
	S 4	2.87, 433	0.08	2.93, 424	0.11	2.85, 435	0.07	3.16, 393	0.01	
	S5	3.01.411	0.00	3.17.391	0.03	3.51, 354	0.04	3.73. 333	0.04	
VIII of 2	S ₆	3.24, 383	0.04	3.36.370	0.11	3.69.336	0.01	3.87.320	0.53	
and 3 without	S7	3 36 369	0.01	3 64 341	0.02	3 70 335	0.01	3 89 319	0.18	
	S8	3 52 352	0.00	3 72 333	0.63	4 00 310	0.00	4 40 282	0.01	
Al	So	3 58 346	0.00	3 78 328	0.00	4 13 300	0.53	4 47 278	0.01	
	S10	3 68 337	0.02	3 94 315	0.00	4.15, 500	0.00	4.55 272	0.00	
	S10	2.06, 603	0.02	2 30 530	0.00	1 00 623	0.00	1.07.631	0.00	
Ternary	S1 S2	2.00, 005	0.00	2.50, 557	0.37	1.99, 023 2.40, 516	0.30	2 60 477	0.04	
	52 Sa	2.75, 511	0.00	2.30,404	0.35	2.40, 210	0.39	2.00, 477	0.11	
1/Al/3	33 C.	2.47,499	0.04	2.39,478	0.07	2.47, 222 2.56, 240	0.00	261 240	0.02	
trans-	54 S	2.51, 493	0.52	3.03, 410	0.00	5.50, 548 2.50, 245	0.02	3.04, 340	0.00	
diaquo	55	3.12,398	0.00	3.03, 407	0.00	3.39, 343	0.08	3.92, 317	0.05	
Aiuminu	5 6	3.18, 390	0.00	3.30, 3/3	0.00	3.03, 340	0.02	4.04, 307	0.05	
m Com-r-1	S7	3.19, 389	0.00	5.55, 570	0.00	5.84, 523	0.00	4.17, 297	0.00	
Complex	S_8	3.27, 379	0.07	3.61, 343	0.01	4.03, 307	0.00	4.23, 293	0.26	
IV	S ₉	3.36, 369	0.02	3.63, 342	0.02	4.13, 300	0.02	4.26, 291	0.19	
	S_{10}	3.69, 336	0.00	3.73, 333	0.40	4.24, 292	0.00	4.33, 287	0.00	

Ternary 1/Al/3 cis- diaquo Aluminu m Complex	S_1	2.17, 572	0.23	2.22, 559	0.33	1.95, 638	0.48	1.93, 644	0.55
	S_2	2.20, 563	0.02	2.49, 498	0.06	2.48, 500	0.09	2.72, 456	0.05
	S_3	2.39, 519	0.02	2.73, 454	0.24	2.94, 421	0.00	3.12, 397	0.09
	S_4	2.69, 461	0.24	3.04, 407	0.04	3.29, 377	0.10	3.24, 383	0.03
	S_5	2.99, 415	0.02	3.08, 402	0.10	3.48, 357	0.07	3.80, 327	0.06
	S_6	3.10, 400	0.04	3.13, 396	0.01	3.52, 352	0.02	3.88, 319	0.02
	S_7	3.17, 391	0.00	3.21, 387	0.01	3.59, 346	0.01	3.89, 319	0.01
	S_8	3.30, 376	0.06	3.59, 346	0.05	3.93, 316	0.00	3.98, 312	0.00
11	S 9	3.39, 365	0.07	3.64, 341	0.00	3.96, 314	0.02	4.03, 308	0.21
	S_{10}	3.40, 364	0.00	3.70, 335	0.02	4.01, 309	0.02	4.13, 300	0.00
	S_1	2.18, 568	0.10	2.32, 535	0.46	2.02, 613	0.49	1.97, 631	0.67
Ternary	S_2	2.51, 494	0.37	2.55, 486	0.33	2.43, 511	0.29	2.60, 477	0.10
2/Al/3	S_3	2.53, 490	0.20	2.75, 451	0.00	3.26, 380	0.02	3.10, 400	0.01
<i>trans</i> - diaquo	S_4	2.86, 433	0.00	2.98, 416	0.03	3.54, 350	0.00	3.82, 325	0.01
	S_5	3.04, 408	0.00	3.08, 403	0.00	3.85, 322	0.02	3.85, 322	0.03
Aluminu	S_6	3.09, 401	0.00	3.35, 370	0.00	3.89, 319	0.01	4.16, 298	0.00
m	S_7	3.21, 387	0.00	3.53, 352	0.00	3.94, 314	0.05	4.21, 295	0.05
Complex IV	S_8	3.54, 351	0.03	3.62, 342	0.02	3.96, 314	0.01	4.31, 288	0.01
	S 9	3.65, 340	0.01	3.68, 337	0.00	4.09, 303	0.00	4.37, 284	0.00
	S_{10}	3.66, 339	0.00	3.77, 329	0.00	4.30, 288	0.00	4.45, 279	0.43
	S_1	2.20, 563	0.01	2.31, 538	0.45	2.16, 575	0.61	2.01, 617	0.68
-	S_2	2.26, 550	0.02	2.45, 507	0.04	2.42, 512	0.09	2.65, 469	0.02
Ternary 2/Al/3 cis- diaquo Aluminu m Complex II	S_3	2.27, 547	0.23	2.67, 465	0.20	3.02, 411	0.00	3.09, 401	0.00
	S_4	2.57, 482	0.33	2.95, 420	0.03	3.20, 388	0.04	3.23, 384	0.05
	S_5	2.97, 417	0.02	3.00, 413	0.05	3.44, 361	0.05	3.80, 326	0.02
	S_6	3.15, 394	0.04	3.21, 387	0.01	3.62, 343	0.00	3.87, 320	0.10
	S_7	3.19, 389	0.02	3.25, 382	0.02	3.80, 327	0.02	4.00, 310	0.00
	S_8	3.25, 381	0.00	3.62, 343	0.05	4.00, 310	0.02	4.14, 300	0.00
	S 9	3.39, 366	0.00	3.64, 340	0.01	4.10, 303	0.00	4.19, 296	0.05
	S_{10}	3.47, 357	0.04	3.76, 330	0.00	4.11, 302	0.08	4.23, 293	0.34