Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Title. Multifunctional Phosphoramide-(S)-Prolinamide Derivatives as Efficient Organocatalysts in Asymmetric Aldol and Michael Reactions

Carlos Crúz-Hernández,^a José M. Landeros,^a Eusebio Juaristi^{*a,b}

^aDepartamento de Química, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 Ciudad de México, Mexico.

^bEl Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico.

Index	page
1. General experimental	S2
2. NMR spectra comparing compounds with (2-naphthyl)ethyl-moieties and phenyl-m	oieties S3
3. Tables of catalytic evaluation comparing organocatalysts with (2-naphtly)eth	yl-moieties
versus phenyl-moieties	S13
4. NMR spectra of synthetized compound	S15
5. Aldolic and Michael adducts (NMR, HPLC-chromatograms)	S62
6. References	S107

1. General experimental and characterization

Materials and apparatus. All reagents were purchased from Sigma-Aldrich and used as received unless otherwise indicated. Solvents were dried by conventional methods. For reactions under microwave radiation were run in a single-mode Discover System reactor (CEM corp.). Column Chromatography were performed with Merck Silica Gel (0.040-0.063 mm). TLC were run on Merck DC-F254 plates using UV light or iodine vapors as revelator. **Samples Characterization**. NMR spectra were performed on a JEOL eclipse 400 and JEOL ECA-500 spectrometers, and the chemical shifts were referenced to the deuterate solvent peak. Melting points data were determined on a Büchi B-540 apparatus and are uncorrected. Optical rotations were determined in an Anton Paar MCP-100 Polarimeter using reagent grade solvents. FTIR spectra were recorded on a Varian 640-IR Spectrometer. Crystallographic data were determined on an Enraf-Nonius Kappa CCD and Enraf-Nonius CAD-4. High resolution mass spectra (HRMS) were measured on a HPLC 1100 coupled to an MSD-TOF Agilent Technologies HR-MSTOF 1069A. Determination of diastereomeric and enantiomeric excess were carried out on a Dionex HPLC ultimate 3000 with UV/Visible detector, diode array, at 210 and 254 nm, using a suitable chiral column.

Complete Synthesis of *bis*-amidophosphoryl amine fragment incorporating the naphthylethyl moiety.

To synthesize the desired catalysts we first prepared the required chiral phosphoramides **8** according to a general procedure reported previously¹ (See Scheme S1). The synthetic strategy began with the opening of cyclohexene oxide (**1**) with (*R*)-1-(2-naphthyl)ethylamine [(*R*)-**2**], promoted by lithium perchlorate in refluxing acetonitrile, to afford diastereomeric aminoalcohols (1*SR*, 2*SR*, 1'*R*)-**3** (99% yield, 1:1 dr). The mixture of β -aminoalcohols **3** was employed in the formation of aziridine (*R*)-**4**, in 98 yield), via a reaction sequence that involved the initial activation of the hydroxyl group as the corresponding *p*toluenesulfonate and subsequent internal nucleophilic substitution (S_Ni) by the amino group. Aziridine (*R*)-**4** was treated with chiral amine (*R*)-**2** to afford the anticipated mixture of diastereomeric *trans* diamines (*1SR*, *2SR*, *1'R*, *2'R*)-**5** in 85% yield. This diastereomeric mixture could not be separated under standard procedures (chromatographic column, fractional precipitation or recrystallization) and was used as such in the subsequent condensation with phosphorus oxychloride, obtaining a mixture of *P*-chloro-*bis*phosphoramides (*1R*, *2R*, *1'R*, *2'R*)-**6** and (*1S*, *2S*, *1'R*, *2'R*)-**6** in good yield (80 %) and 2:1 diastereomeric ratio (verified by ¹H and ³¹P NMR, see SI). Following steps to get compound (*1R*, *2R*, *1'R*, *2'R*)-**8** are described in the paper.

Scheme S1. Full Synthesis of phosphoramides (*1R*,*2R*,*1'R*,*2'R*)-**8** and (*1S*,*2S*,*1'R*,*2'R*)-**8** incorporating (2-naphthyl)ethyl moieties.

2. NMR spectra comparing compounds with (2-naphthyl)ethyl-moieties and phenyl-moieties

In order to determine the configuration of compounds (1R, 2R, 1'R, 2'R)-6 and (1S, 2S, 1'R, 2'R)-6 [as well as (1R,2R,1'R,2'R)-7, (1S,2S,1'R,2'R)-7, (1R,2R,1'R,2'R)-8 and (1S,2S,1'R,2'R)-8] a carefully analysis of their ¹H-NMR spectra (Figure S1 – S9) was conducted. As it turns out, the ¹H NMR spectra of diastereometric (1R,2R,1'R,2'R)-6-8 and (1S,2S,1'R,2'R)-6-8 show a distinctive pattern for the methyl groups (marked in red), the endocyclic methines (marked in blue) and the exocyclic methines (marked in green). It can be appreciated in Figure S1 that the difference in chemical shifts for the exocyclic methine protons (marked in green) are larger in the all-(R) diastereomer relative to the difference in chemical shift observed in the (15,25,1'R,2'R) diastereomers. By contrast, the chemical shifts recorded for the corresponding methyl groups (marked in red) exhibit an opposite trend, i.e. larger chemical shift difference observed in the (15,25,1'R,2'R) diastereomers. These observations are in line with assignments made on ¹H-NMR spectra of previously reported analogous compounds¹ (Figure S2) which were secured with support from X-ray crystallographic structures and allowed the determination of the configuration of the major P-chloride diastereomer as (1R, 2R, 1'R, 2'R)-6. To enforce this assumption, similar analysis was conducted for the diastereomeric pairs (1R,2R,1'R,2'R)-7 and (1S,2S,1'R,2'R)-7 (Figure S4 and S5), and (1R,2R,1'R,2'R)-8 and (15,25,1'R,2'R)-8 (Figure S7 and S8). As expected, the corresponding ¹H-NMR spectra exhibit similar patterns, to those observed in the reference compounds (Figure S3, S6 and S9).¹

Figure S1 Comparison of ¹H-NMR spectra of diastereomeric pairs (1*R*,2*R*,1'*R*,2'*R*)-**6** and (1*S*,2*S*,1'*R*,2'*R*)-**6**.

Figure S2 NMR spectra of diastereomers (1R,2R,1'R,2'R)-6' and (1R,2R,1'R,2'R)-6'.1

Figure S3 NMR spectra of diastereomers (1R, 2R, 1'R, 2'R)-**6'** and (1S, 2S, 1'R, 2'R)-**6'** (previous work)¹ versus diastereomers (1R, 2R, 1'R, 2'R)-**6** and (1S, 2S, 1'R, 2'R)-**6** (this work).¹

Figure S4 Comparison of ¹H-NMR spectra of diastereomeric pairs (1*R*,2*R*,1'*R*,2'*R*)-7 and (1*S*,2*S*,1'*R*,2'*R*)-7

Figure S5 NMR spectra of diastereomers (1R,2R,1'R,2'R)-7' and (1R,2R,1'R,2'R)-7'.1

Figure S6 NMR spectra of diastereomers (1R, 2R, 1'R, 2'R)-**7'** and (1S, 2S, 1'R, 2'R)-**7'** (previous work)¹ versus diastereomers (1R, 2R, 1'R, 2'R)-**7** and (1S, 2S, 1'R, 2'R)-**7** (this work).¹

Figure S7 Comparison of ¹H-NMR spectra of diastereomeric pairs (1*R*,2*R*,1'*R*,2'*R*)-8 and (1*S*,2*S*,1'*R*,2'*R*)-8

Figure S8 NMR spectra of diastereomers (1R,2R,1'R,2'R)-8' and (1R,2R,1'R,2'R)-8'.1

Figure S9 NMR spectra of diastereomers (1R, 2R, 1'R, 2'R)-**8'** and (1S, 2S, 1'R, 2'R)-**8'** (previous work)¹ versus diastereomers (1R, 2R, 1'R, 2'R)-**8** and (1S, 2S, 1'R, 2'R)-**8** (this work).¹

3. Comparison of organocatalysts with (2-naphtly)ethyl- versus phenyl-moieties

Table S1 Comparison between (*1R*,*2R*,*1'R*,*2'R*,*2''S*)-**9** and (*1R*,*2R*,*1'R*,*2'R*,*2''S*)-**9'** organocatlyst in aldol addition reaction of cyclohexanone to aryl-substituted isatins.¹

^aReaction conditions: Aryl-substituted isatin (1.0 mmol, 1.0 equiv.), cyclohexanone (7.0 equiv.), benzoic acid (0.1 equiv.), Cat* (10 mol%) and water (1 mL), 48 h at 3 °C. ^bDetermined of isolated products after chromatographic purification based on isatin. ^cDetermined by ¹H NMR. ^dDetermined by chiral HPLC.

Table S2 Comparison of (15,25,1'R,2'R,2''S)-**20** and (15,25,1'R,2'R,2''S)-**20'** organocatalysts in Michael addition reaction of cyclohexanone to various substituted β -nitroolefins.³

				Ma	
0 + 10	^R NO ₂ – 23a-m	Cat* (7 mol%) BzOH (7%) H ₂ O, r.t., 16 h 24a-m	(R) Ne (S) N O (S) N H H (R) (N) O (R) (vs (R) Me (R) Me (S) N H (R) Me (1R,2R,1'R,2'R	N ^{™,4S} H HN 2,2" S)- 20'
Entry	R	Cat* ^a	Yield (%) ^b	dr (<i>syn/anti</i>) ^c	er ^d
1	2-Cl	(1R,2R,1'R,2'R,2''S)- 20'	99	94:6	98:2
2	2-Cl	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 20	99	95:5	97:3
3	3-Cl	(1R,2R,1'R,2'R,2''S)- 20'	37	97:3	96:4
4	3-Cl	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20	32	92:8	97:3
5	4-Cl	(1 <i>R,2R,1'R,2'R,2''S</i>)- 20'	52	97:3	98:2
6	4-Cl	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20	46	94:6	97:3
7	2-Br	(1 <i>R,2R,1'R,2'R,2''S</i>)- 20'	99	94:6	97:3
8	2-Br	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20	99	96:4	93:7
9	3-Br	(1 <i>R,2R,1'R,2'R,2''S</i>)- 20'	31	97:3	98:2
10	3-Br	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20	33	92:8	97:3
11	4-Br	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20'	99	97:3	96:4
12	4-Br	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20	95	95:5	98:2
13	4-NO ₂	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20'	94	96:4	97:3
14	4-NO ₂	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 20	99	90:10	97:3
15	4-Me	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 20'	86	96:4	96:4
16	4-Me	(1S,2S,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 20	77	96:4	96:4

^aReaction conditions: Substituted β -nitroolefins (1.0 mmol, 1.0 equiv.), cyclohexanone (7.0 equiv.), benzoic acid (0.07 equiv.), Cat.* (7 mol%) and water (1 mL), at room temperature for 16 h. ^bDetermined of isolated products after chromatographic purification based on β -nitroolefin. ^cDetermined by ¹H NMR of crude product. ^dDetermined by chiral HPLC.

Table S3 Comparison between (1R, 2R, 1'R, 2'R, 2''S)-**17** and (1R, 2R, 1'R, 2'R, 2''S)-**17'** organocatalyst in Aldol addition reaction of cyclohexanone to substituted arylcarbaldehyde.²

_						
• •	CHO Cat.* (5% mol) BZOH (5% mol) H ₂ O, 3° C	O OH			vs vs	
10	18a-m	19a-m	(I			
			(1 <i>R</i>	?,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2" <i>S</i>) -17	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2	' <i>R</i> ,2"S)- 17'
Entry	Cat.*a	R	T (h)	Yield (%) ^b	dr (anti/syn) ^c	er ^d
1	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	2-Cl	96	96	89:11	91:9
2	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	2-Cl	96	99	92:8	93:7
3	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	3-Cl	96	96	93:7	92:8
4	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	3-Cl	96	99	93:7	94:6
5	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	4-Cl	96	83	91:9	89:11
6	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-Cl	96	80	93:7	96:4
7	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 11'	4-Br	96	87	92:8	90:10
8	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-Br	96	85	92:8	93:7
9	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	4-NO ₂	30	98	92:8	93:7
10	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-NO ₂	30	99	93:7	94:6
11	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	2-CF ₃	96	72	91:9	87:13
12	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	2-CF ₃	96	99	92:8	92:8
13	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	4-CF ₃	24	99	93:7	93:7
14	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-CF ₃	24	99	94:6	93:7
15	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	Н	168	80	90:10	90:10
16	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	Н	168	83	88:12	92:8
17	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	4-CH ₃	168	44	88:12	86:14
18	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-CH ₃	168	56	90:10	93:7
19	(1 <i>S</i> ,2 <i>S</i> ,1' <i>R</i> ,2' <i>R</i> ,2'' <i>S</i>)- 17'	4-C ₆ H ₅	168	46	89:11	87:13
20	(1 <i>R</i> ,2 <i>R</i> ,1' <i>R</i> ,2' <i>R</i> ,2''S)- 17	4-C ₆ H ₅	168	54	91:9	91:9

^aReaction conditions: Substituted arylcarbaldehyde (1.0 mmol, 1.0 equiv.), cyclohexanone (5.0 equiv.), benzoic acid (0.05 equiv.), Cat^{*} = (1R,2R,1'R,2'R,2''S)-**17** or (1R,2R,1'R,2'R,2''S)-**17'** (0.05 equiv.) and water (1 mL) at 3 °C. ^bDetermined of isolated products after chromatographic purification based on arylcarbaldehyde. ^cDetermined by ¹H NMR of crude product. ^dDetermined by chiral HPLC.

4. NMR spectra of synthetized compound

7-[(*R*)-1-(2-naphthyl)ethyl]-7-azabicyclo[4.1.0]heptane (*R*)-**3**

Diastereomeric mixture of (3aRS,7aRS)-2-Oxide-2-chlorooctahydro-1,3-bis[(1R)-1-(2-naphthyl)ethyl]-1H-1,3,2-benzodiazaphosphole, (1RS,2RS,1'R,2'R)-**6**

(3a*R*,7a*R*)-2-Oxide-2-chlorooctahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-1*H*-1,3,2-benzodiazaphosphol, (1S,2S,1'R,2'R)-**6** (major diastereoisomer)

(3a*S*,7a*S*)-2-Oxide-2-azidooctahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-1*H*-1,3,2-benzodiazaphosphol, (1*S*,2*S*,1'*R*,2'*R*)-**7** (minor diastereoisomer)

(3a*R*,7a*R*)-2-Oxide-2-clorooctahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-1*H*-1,3,2-benzodiazaphosphol, (1*R*,2*R*,1'*R*,2'*R*)-**7** (major diastereoisomer)

(3a*S*,7a*S*)-2-Oxide-2-aminooctahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-1*H*-1,3,2benzodiazaphosphol, (1*S*,2*S*,1'*R*,2'*R*)-**8** (minor diastereoisomer)

(3a*R*,7a*R*)-2-Oxide-2-aminooctahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-1*H*-1,3,2-benzodiazaphosphol, (1*R*,2*R*,1'*R*,2'*R*)-**8** (major diastereoisomer)

Catalyst (1R,2R,1'R,2'R,2''S)-9

(3a*R*,7a*R*)-2-oxide-*N*-(2-bromoacethyl)-octahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-2*H*-1,3,2-benzodiazaphosphol-2-amine, (1*R*,2*R*,1'*R*,2'*R*)-**13**

(3a*R*,7a*R*)-2-oxide-*N*-(2-azidoacethyl)-octahydro-1,3-bis[(1*R*)-1-(2-naphthyl)ethyl]-2*H*-1,3,2-benzodiazaphosphol-2-amine, (*1S*,*2S*,*1'R*,*2'R*)-**14**

(3aR,7aR)-2-oxide-N-(2-aminoacethyl)-octahydro-1,3-bis[(1R)-1-(2-naphthyl)ethyl]-2H-1,3,2-benzodiazaphosphol-2-amine, (1S,2S,1'R,2'R)-15

Pre-catalyst (1*R*,2*R*,1'*R*,2'*R*,2''*S*)-**16**

Catalyst (1R,2R,1'R,2'R,2"S)-17

Pre-catalyst (15,25,1'R,2'R,2''S)-22

Catalyst (15,25,1'R,2'R,2"S)-20

5. Aldolic and Michael adducts (NMR, HPLC-chromatograms)

¹H-RMN and chiral HPLC-chromatograms for the dr and er for the aldol addition of cyclohexanone to isatins catalyzed by (1*R*,2*R*,1'*R*,2'*R*,2''*S*)-9.

(R)-3-hydroxy-5-nitro-3-((S)-2-oxocyclohexyl)indolin-2-one, (3R,2'S)-12a

Conditions: Chiralpack AD-H, Hex-IPA (80:20), 0.5 mL/min, 70 minutes.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 110 minutes.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 110 minutes.

¹H-RMN and chiral HPLC-chromatograms for the dr and er for the aldol addition of cyclohexanone to aryl carbaldehydes catalyzed by (1*R*,2*R*,1'*R*,2'*R*,2''*S*)-17.

(S)-2-[(R)-(2-chlorophenyl)(hydroxy)methyl]cyclohexanone 19a

Conditions: Chiralpack AD-H, Hex-IPA (95:5), 0.5 mL/min, 40 minutes.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min., 40 minutes.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min., 30 minutes.

(S)-2-[(R)-(4-bromophenyl)(hydroxy)methyl]cyclohexanone **19d**

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 1.0 mL/min., 30 minutes

(S)-2-[(R)-hydroxy(4-nitrophenyl)methyl)cyclohexanone **19g**

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 1.0 mL/min., 35 minutes

Conditions: Columnd Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 30 minutes

(S)-2-[(R)-hydroxy(4-trifluoromethyl)(phenhyl)methyl]cyclohexanone 19j

Conditions: Columnd Chiralpack AD-H, Hex-IPA (95:5), 1.0 mL/min, 30 minutes

(S)-2-[(R)-hydroxy(phenyl)methyl]cyclohexanone **19k**

Conditions: Columnd Chiralpack OD-H, Hex-IPA (95:5), 0.5 mL/min, 35 minutes

Conditions: Chiralpack OD-H, Hex-IPA (97:3), 1.0 mL/min., 25 minutes

(S)-2-[(R)-biphenyl-4-yl(hydroxy)methyl]cyclohexanone **19m**

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 1.0 mL/min., 30 minutes

¹H-RMN and chiral HPLC-chromatograms for the dr and er for the Michael addition of cyclohexanone to nitrostyrenes catalyzed by (1*S*,2*S*,1'*R*,2'*R*,2''*S*)-20.

(S)-2-((R)-1-(2-chlorophenyl)-2-nitroethyl)cyclohexanone **24a**.

Conditions: Chiralpack AD-H, Hex-IPA (95:5), 0.5 mL/min, 45 minutes.

(S)-2-((R)-1-(3-chlorophenyl)-2-nitroethyl)cyclohexanone **24b**.

Conditions: Chiralpack AS-H, Hex-IPA (90:10), 1.0 mL/min, 40 minutes.

(S)-2-((R)-1-(4-chlorophenyl)-2-nitroethyl)cyclohexanone **24c**.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 40 minutes.

(S)-2-((R)-1-(2-bromophenyl)-2-nitroethyl)cyclohexanone **24e**.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 45 minutes.

(S)-2-((R)-1-(3-bromophenyl)-2-nitroethyl)cyclohexanone **24f**.

Conditions: Chiralpack AS-H, Hex-IPA (90:10), 1.0 mL/min, 40 minutes.

(S)-2-((R)-1-(4-bromophenyl)-2-nitroethyl)cyclohexanone **24g**.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 1.0 mL/min, 30 minutes.

(S)-2-((R)-2-nitro-1-(4-nitrophenyl)ethyl)cyclohexanone **24i**.

Conditions: Chiralpack AD-H, Hex-IPA (80:20), 1.0 mL/min, 40 minutes.

(S)-2-((R)-2-nitro-1-p-tolylethyl)cyclohexanone **24k**.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.5 mL/min, 35 minutes.

(1R,2S,4R,5S)-methyl 2-hydroxy-9-oxo-4-phenylbicyclo[3.3.1]nonane-2-carboxylate 18a.

Conditions: Chiralpack AD-H, Hex-IPA (90:10), 0.6 mL/min, 90 minutes.

6. References

- 1. C. Cruz-Hernández, P. E. Hernández-González, and E. Juaristi, *Synthesis*, **2018**, 50, 1827.
- 2. C. Cruz-Hernández, P. E. Hernández-González, and E. Juaristi, *Synthesis*, **2018**, 50, 3445.
- 3. C. Cruz-Hernández, E. Martinez-Martinez, P. E. Hernández-González, and E. Juaristi *Eur. J. Org. Chem.* **2018**, 6890-6900.