Supplementary Information

Thermochromism of bromotellurates (IV): experimental insights

Vladimir R. Shayapov, ${ }^{[a]}$ Andrey N. Usoltsev, ${ }^{[a][b]}$ Sergey A. Adonin, ${ }^{[a][b]}$ Maxim N. Sokolov, ${ }^{[a][b]}$ Denis G. Samsonenko ${ }^{[a][b]}$ and Vladimir P. Fedin ${ }^{[a][b]}$

Figure 1S. Setup use for diffuse reflectance spectra measurements at different temperatures.
(1) Kolibri-2 Spectrometer, (2) D/W lamp (AvaLight-DHS), (3) Thermometer, (4) PC, (5)

Thermocouple, (6) Fiber optic cable (Ocean Optics, QR-400-7), (7) Sealed cell, (8) Sample, (9) Dewar vessel, (10) liquid nitrogen, (11) Protecting casing, (12) scissors jack

X-Ray Crystallography. Diffraction data for single-crystals of 2, 9, 10, 13 and 14 were obtained at 130 K on an automated Agilent Xcalibur diffractometer equipped with an area AtlasS2 detector (graphite monochromator, $\lambda(\mathrm{MoK} \alpha)=0.71073 \AA$, ω-scans). Integration, absorption correction, and determination of unit cell parameters were performed using the CrysAlisPro program package [*]. The structures were solved by dual space algorithm (SHELXT [**]) and refined by the full-matrix least squares technique (SHELXL [***]) in the anisotropic approximation (except hydrogen atoms). Positions of hydrogen atoms of organic cations were calculated geometrically and refined in the riding model. The crystallographic data and details of the structure refinements are summarized in Table S1. CCDC 1878422-1878426 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at http://www.ccdc.cam.ac.uk/data_request/cif.
[*] CrysAlisPro 1.171.38.41. Rigaku Oxford Diffraction. 2015.
[**] Sheldrick G.M. // Acta Cryst., 2015, A71, 3.
[***] Sheldrick G.M. // Acta Cryst., 2015, C71, 3.

Table 1S. Crystal data and structure refinement for 2, 9, 10, 13 and 14

Identification code	2	9	10	13	14
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{20.5} \mathrm{Br}_{6} \mathrm{~N}_{2} \mathrm{O}_{0}$	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{6} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O} \\ & { }_{2} \mathrm{Te} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \\ & \mathrm{Te} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Br}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \\ & \mathrm{Te} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Br}_{6} \mathrm{Cl}_{4} \mathrm{~N}_{2} \\ & \mathrm{O}_{2} \mathrm{Te} \end{aligned}$
$\mathrm{M}, \mathrm{g} / \mathrm{mol}$	827.88	1055.09	836.16	989.16	941.08
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	C2/c	$P-1$	$P-1$	$P 2_{1} / n$	$P 2_{1} / n$
a, \AA	15.3224(4)	7.6363(5)	7.3223(5)	9.7234(5)	8.6178(4)
b, \AA	13.0117(4)	11.3319(7)	8.3339(6)	11.0724(5)	12.9085(6)
c, \AA	23.4808(7)	14.0460(10)	9.0497(6)	12.1082(7)	10.8436(5)
α, deg.	90	95.738(5)	74.694(6)	90	90
β, deg.	94.188(3)	93.775(5)	70.263(5)	109.028(6)	98.779(4)
γ, deg.	90	103.128(5)	83.031(6)	90	90
V, \AA^{3}	4668.9(2)	1172.83(14)	501.05(6)	1232.36(12)	1192.14(10)
Z	8	2	1	2	2
D (calc.), $\mathrm{g} / \mathrm{cm}^{3}$	2.356	2.988	2.771	2.666	2.622
μ, mm^{-1}	11.546	14.128	13.707	14.186	11.76
$F(000)$	3060	944	380	904	864
Crystal size, mm	$\begin{aligned} & 0.31 \times 0.28 \times \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.30 \times 0.25 \times \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.39 \times 0.23 \times \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.47 \times 0.12 \times \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.21 \times 0.15 \times \\ & 0.12 \end{aligned}$
θ range for data collection, deg.	3.40-28.94	3.28-28.87	3.62-29.05	3.56-28.87	3.28-28.85
Index ranges	$\begin{aligned} & -20 \leq h \leq 15, \\ & -17 \leq k \leq 17, \\ & -31 \leq l \leq 26 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10, \\ & -15 \leq k \leq 15, \\ & -16 \leq l \leq 17 \end{aligned}$	$\begin{aligned} & -6 \leq h \leq 10, \\ & -11 \leq k \leq 11, \\ & -9 \leq l \leq 12 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 13, \\ & -8 \leq k \leq 14, \\ & -15 \leq l \leq 15 \end{aligned}$	$\begin{aligned} & -7 \leq h \leq 11, \\ & -17 \leq k \leq 13, \\ & -14 \leq l \leq 12 \end{aligned}$
Reflections collected / independent	12214 / 5127	10349 / 5087	3754 / 2201	5857 / 2725	5336/2627

$R_{\text {int }}$	0.0169	0.0318	0.0266	0.0270	0.0255
Reflections with $I>2 \sigma(I)$	4778	4280	1905	2266	2283
Goodness-of-fit	1.233	0.998	1.040	0.972	1.027
on F^{2}					
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0274$, $w R_{2}=0.0625$	$R_{1}=0.0326$, $w R_{2}=0.0631$	$R_{1}=0.0352$, $w R_{2}=0.0741$	$R_{1}=0.0281$, $w R_{2}=0.0429$	$R_{1}=0.0274$, $w R_{2}=0.0508$
R indices (all data)	$R_{1}=0.0303$, $w R_{2}=0.0632$	$R_{1}=0.0428$, $w R_{2}=0.0667$	$R_{1}=0.0427$, $w R_{2}=0.0783$	$R_{1}=0.0399$, $w R_{2}=0.0460$	$R_{1}=0.0352$, $w R_{2}=0.0527$
Largest diff. peak $/$ hole, e / \AA^{3}	$0.804 /-0.628$	$1.114 /-1.492$	$0.952 /-1.538$	$0.692 /-0.813$	$0.502 /-0.589$

Preparation of 2

$116 \mathrm{mg}(0.5 \mathrm{mmol})$ of 1,2-dimethylpyridinium iodide were dissolved in 5 ml of water; 100 mg of AgNO_{3} were added and the mixture was stirred for 15 min . Precipitate of Agl was filtered off; several drops of HBr were added and solution was filtered again. After that, 5 ml of 2 M HBr were added (solution 1). Separately, $40 \mathrm{mg}(0.25 \mathrm{mmol})$ of TeO_{2} were dissolved in 5 ml of 2 M HBr at $70^{\circ} \mathrm{C}$; then solution 1 was added. The mixture was slowly cooled to r.t; after partial evaporation of solvent, there forms orange crystalline precipitate of 2. Yield 81%. The sample was dried in air for 1 h . For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{TeBr}_{6}$ calcd, \%: C 20.4; H 2.5; N 3.4; found, \%: C 20.1; H 2.8; N 3.3.

Preparation of 9, 10, 13 or 14

$40 \mathrm{mg}(0.25 \mathrm{mmol})$ of TeO_{2} were dissolved in 3 ml of 2 M HBr at $70^{\circ} \mathrm{C}$; then, solution of $3-\mathrm{IPy}(9$, 54 mg), 2-ClPy ($\mathbf{1 0}, 47 \mathrm{mc})$, 2-Br-5-MePy (13, 52 mg) or $3,5-\mathrm{ClPy}(14,74 \mathrm{mg})$ in 5 ml of 2 M HBr was added. The mixtures were kept at $70^{\circ} \mathrm{C}$ for 20 min and then cooled to r.t.; after partial evaporation of solvent, there forms orange crystalline precipitates. The samples was dried in air for 1 h . Yield: 70% (9), $73 \%(10)$, 72\% (13) and 69\% (14). In all cases, EA data are consistent with calculated values.

Complex	C, H, N, calcd/found, \%
9	$11.8,1.0,2.7 / 11.6 .1 .1,2.8$
10	$14.4,1.2,3.4 / 14.3,1.3,3.3$
13	$15.1,1.5,2.9 / 15.0,1.4,2.8$
14	$13.3,0.9,3.1 / 12.8,1.0,2.9$

Figure 2S. Temperature dependencies of E_{g}; numbers correspond to the Table 1 in main text

Figure 3S. Temperature dependencies of E_{g}; numbers correspond to the Table 1 in main text

Figure 4S. Crystal packing in the structure of 10

Figure 5S. Crystal packing in the structure of 14

Figure 6S. Crystal packing in the structure of 9

Figure 7S. Crystal packing in the structure of 13

