Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Energy Framework Approach to the Supramolecular Reactions: Interplay of the Secondary Bonding Interaction in Ph2E2 (E=Se, Te) / p-I-C6F4-I Co-crystals.

Yury V. Torubaev^{a*}, Dhirendra K. Rai^b, Ivan V. Skabitskii ^a, Srimant Pakhira^{b,c}, Artem Dmitrienko^d

^a N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, GSP-1, L eninsky prospect, 31;

Tel: +7 495 954 38 41; e-mail: torubaev@igic.ras.ru

^b Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology, Simrol, Indore,

India,

^c Department of Chemical & Biomedical Engineering, Florida A&M – Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida, 32310, USA.

^d A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Figure 1_esi. a) Fragment of the packing diagram of **2** showing the H--- π Ph hydrogen bonds in parent Ph₂Se₂ substituted by **b**) I--- π Ph halogen bonds in the Ph₂Se₂-DITFB cocrystal

a

b

c

Figure 2_esi ESP maps for Ph₂E₂

- **a)** E = S (in the native Ph_2S_2);
- **b)** E = Se (in the native Ph_2Se_2);
- c) $E = Te (in Ph_2Te_2-DITFB cocrystal 1)$

Computations

Crystal Explorer 17.5 and QTAIM

General remarks for Tables(1-4_esi) and relevant Figures (4-7_esi). Intermolecular interaction energies were calculated in CrystalExplorer B3LYP-DGDZVP

Total energies, only reported a benchmarked B3LYP-DGDZVP energy model, is the sum of the four energy components, scaled appropriately

Scale factors for benchmarked B3LYP-DGDZVP energy model [1].

Energy Model	k_ele	k_pol	k_disp	k_rep
CE-B3LYP DGDZVP	1.057	0.740	0.871	0.618

^{1.} C. F. Mackenzie, P. R. Spackman, D. Jayatilaka and M. A. Spackman, IUCrJ, 2017, 4, 575.

 Table 1_esi. Interaction Energies in Ph₂Te₂ (DPHTE01) crystal (kJ/mol)

Table 2_esi Interaction Energies (kJ/mol) in Ph_2Te_2 _DITFB crystal (1) Total energies, only reported for two benchmarked energy models, are the sum of the four energy components, scaled appropriately (see the scale factor table below)

Table 3_esi Interaction Energies in Ph₂Se₂ crystal (YUXPIR)

 Table 4_esi Interaction Energies in Ph₂Se₂_DITFB crystal (2)

Table 5_esi Interaction Energies (CE-B3LYP-DGDZVP) between *p*-DITFB molecules in their stacks in cocrystals 1-2.

	Ph_2Te_2	Ph_2Se_2
Unit cell	$P2_12_12_1$ (YUXQEO)	$P2_12_12_1$ (YUXPIR)
	a 5.1563(8)	a 5.5699(19)
	b 8.5809(13)	b 8.238(3)
	c 26.784(4)	c 23.826(7)
Packing View along <i>a</i> axis		
	1 Ph ₂ Te ₂ <i>p</i> -DITFB	2 $Ph_2Se_2 p$ -DITFB
Packing View along <i>b</i> axis		
	$P 2_1/n$ a 13.2557(10) b 5.3985(4) c 23.3604(18)	$P 2_1/c$ a 10.1178(7) b 5.6743(4) c 26.6419(18)

Table 6_esi. Packing of the native Ph₂Te₂, Ph₂Se₂ and their co-crystals 1 and 2

Figure 4_esi. Fragment of the energy framework in Ph_2S_2 - OFNp cocrystal.

Figure 5_esi. Structure overlay of the Ph_2Te_2 chain fragments in the parent Ph_2Te_2 crystal (YUXQEO) and cocrystal 1 (wireframe).

Figure 6_esi. Structure overlay of the Ph_2Se_2 chain fragments in the parent Ph_2Se_2 crystal (YUXPIR) and cocrystal 2 (wireframe).

Figure 7_esi. Selected critical points (BCP) [3, -1] in the native Ph₂Te₂

		1 6	-				Е,
Туре	Name	Atoms	Rho, e∙Å-3	V, a.e.	L, e∙Å-5	Ellip	kcal/mol
(3,-1)	BCP	C88 C42	0,03	-0,002	0,31	2,24	-0,51
(3,-1)	BCP	C90 C41	0,03	-0,002	0,31	2,05	-0,51
(3,-1)	BCP	Te83 Te38	0,04	-0,002	0,32	0,18	-0,62
(3,-1)	BCP	Te38 H91	0,04	-0,002	0,36	0,04	-0,78
(3,-1)	BCP	H71 C62	0,04	-0,003	0,42	0,31	-0,80
(3,-1)	BCP	C35 Te61	0,04	-0,003	0,41	0,95	-0,82
(3,-1)	BCP	Te38 C74	0,05	-0,003	0,49	1,61	-1,05
(3,-1)	BCP	C90 C88	2,17	-0,459	-23,21	0,19	
(3,-1)	BCP	C72 H71	1,86	-0,309	-23,10	0,01	
(3,-1)	BCP	C88 H89	1,86	-0,308	-22,98	0,01	
(3,-1)	BCP	Te38 C48	0,81	-0,126	1,10	0,03	
(3,-1)	BCP	Te60 C70	0,81	-0,125	1,03	0,03	
(3,-1)	BCP	Te82 C92	0,81	-0,125	0,98	0,03	
(3,-1)	BCP	Te39 C40	0,79	-0,118	0,82	0,03	
(3,-1)	BCP	Te61 C62	0,80	-0,118	0,73	0,03	
(3,-1)	BCP	Te39 Te38	0,48	-0,049	-0,12	0,01	
(3,-1)	BCP	Te61 Te60	0,48	-0,049	-0,12	0,00	
(3,-1)	BCP	Te83 Te82	0,48	-0,048	-0,11	0,00	

Figure 8_esi. Selected critical points (BCP) [3, -1] in 1

Table 8	esi. Select	ted critical points	[3, -1] in 1.				
Туре	Name	Atoms	Rho, e∙Å-3	V, a.e.	L, e∙Å-5	Ellip	E, kcal/mol
(3,-1)	BCP	Te13 I51	0,11	-0,007	0,73	0,04	-2,28
(3,-1)	BCP	C102 Te73	0,06	-0,004	0,54	0,63	-1,29
(3,-1)	BCP	I51 H11	0,05	-0,003	0,48	0,07	-1,00
(3,-1)	BCP	H54 Te73	0,05	-0,003	0,43	0,03	-0,95
(3,-1)	BCP	I51 H42	0,05	-0,003	0,47	0,44	-0,93
(3,-1)	BCP	H24 I51	0,04	-0,003	0,43	0,12	-0,89

(3,-1)	BCP	Te43 I51	0,05	-0,002	0,39	0,06	-0,76
(3,-1)	BCP	H96 C67	0,03	-0,002	0,33	0,56	-0,55
(3,-1)	BCP	Te43 Te73	0,03	-0,002	0,26	0,23	-0,48
(3,-1)	BCP	C45 F53	0,01	-0,001	0,18	0,88	-0,26
(3,-1)	BCP	F53 C52	1,81	-0,810	-1,79	0,02	
(3,-1)	BCP	I51 C50	0,84	-0,130	0,30	0,07	
(3,-1)	BCP	Te73 C74	0,80	-0,121	0,79	0,06	
(3,-1)	BCP	Te97 C98	0,80	-0,120	0,81	0,06	
(3,-1)	BCP	Te73 Te13	0,48	-0,048	-0,12	0,04	
(3,-1)	BCP	Te97 Te43	0,47	-0,047	-0,10	0,02	

Figure 9_esi. Selected critical points (BCP) [3, -1] in the native Ph_2Se_2

Туре	Name	Atoms	Rho, e∙Å-3	V, a.e.	L, e·Å-5	Ellip	E, kcal/mol
(3,-1)	BCP	Se43 H23	0,09	-0,007	0,84	0,44	-2,15
(3,-1)	BCP	H73 Se54	0,09	-0,007	0,83	0,42	-2,15
(3,-1)	BCP	H38 Se25	0,09	-0,007	0,84	0,43	-2,14
(3,-1)	BCP	Se53 H74	0,08	-0,006	0,81	0,72	-2
(3,-1)	BCP	Se79 H94	0,08	-0,006	0,8	0,65	-1,99
(3,-1)	BCP	Se24 H39	0,08	-0,006	0,81	0,67	-1,98
(3,-1)	BCP	H50 Se42	0,08	-0,006	0,81	0,71	-1,97
(3,-1)	BCP	Se53 H6	0,06	-0,004	0,58	0,04	-1,36
(3,-1)	BCP	Se42 Se54	0,05	-0,004	0,52	0,3	-1,18
(3,-1)	BCP	Se42 Se53	0,05	-0,003	0,44	0,99	-0,98
(3,-1)	BCP	C68 H37	0,04	-0,003	0,41	1,06	-0,82
(3,-1)	BCP	Se53 H19	0,04	-0,003	0,37	0,08	-0,8
(3,-1)	BCP	H69 Se42	0,04	-0,003	0,37	0,07	-0,8
(3,-1)	BCP	Se54 H37	0,03	-0,002	0,38	2,44	-0,71
(3,-1)	BCP	C56 H73	0,03	-0,002	0,35	0,76	-0,62
(3,-1)	BCP	H70 C59	0,03	-0,002	0,34	0,76	-0,58
(3,-1)	BCP	H69 Se54	0,03	-0,002	0,28	0,19	-0,5
(3,-1)	BCP	C85 H76	0,02	-0,001	0,29	1,56	-0,45

Table 9	_esi.	Sel	ected	critical	points	[3,	, -1]	for	Ph ₂ Se ₂
---------	-------	-----	-------	----------	--------	-----	-------	-----	---------------------------------

(3,-1)	BCP	H87 C68	0,02	-0,001	0,28	2,33	-0,43
(3,-1)	BCP	H19 C3	0,02	-0,001	0,25	0,21	-0,4
(3,-1)	BCP	C2 C1	2,09	-0,429	-21,52	0,2	
(3,-1)	BCP	C3 C2	2,26	-0,493	-25	0,2	
(3,-1)	BCP	C1 H4	1,85	-0,308	-22,85	0,02	
(3,-1)	BCP	C2 H5	1,86	-0,308	-22,93	0,01	
(3,-1)	BCP	H6 C3	1,86	-0,31	-23,17	0,02	
(3,-1)	BCP	C8 C7	2,09	-0,429	-21,53	0,2	
(3,-1)	BCP	C9 C8	2,26	-0,493	-25,03	0,2	
(3,-1)	BCP	C7 H10	1,85	-0,308	-22,94	0,02	
(3,-1)	BCP	C8 H11	1,86	-0,308	-23	0,01	
(3,-1)	BCP	H12 C9	1,86	-0,309	-23,06	0,02	
(3,-1)	BCP	C14 C13	2,09	-0,434	-21,36	0,2	
(3,-1)	BCP	H20 C1	0,04	-0,003	0,42	0,95	
(3,-1)	BCP	C13 C15	2,09	-0,429	-21,57	0,19	
(3,-1)	BCP	C16 C15	2,26	-0,493	-25,04	0,2	
(3,-1)	BCP	C17 C16	2,05	-0,41	-20,76	0,18	
(3,-1)	BCP	C18 C14	2,19	-0,473	-23,53	0,19	
(3,-1)	BCP	C18 C17	2,17	-0,46	-23,05	0,2	
(3,-1)	BCP	C13 H19	1,86	-0,31	-23,12	0,02	
(3,-1)	BCP	C15 H20	1,86	-0,309	-23,21	0,01	
(3,-1)	BCP	C16 H21	1,86	-0,309	-23,06	0,02	
(3,-1)	BCP	H22 C17	1,86	-0,31	-23,16	0,02	
(3,-1)	BCP	H23 C18	1,85	-0,306	-22,91	0,02	
(3,-1)	BCP	C26 C1	2,09	-0,434	-21,33	0,2	
(3,-1)	BCP	Se25 Se24	0,74	-0,092	-1,05	0,01	
(3,-1)	BCP	C26 Se24	1,04	-0,157	-3,97	0,19	
(3,-1)	BCP	C27 C3	2,05	-0,41	-20,81	0,18	
(3,-1)	BCP	C28 C26	2,19	-0,473	-23,57	0,18	
(3,-1)	BCP	C27 C28	2,17	-0,46	-23,09	0,2	
(3,-1)	BCP	C29 C30	2,13	-0,448	-22,28	0,19	
(3,-1)	BCP	Se25 C29	1,04	-0,154	-3,96	0,17	
(3,-1)	BCP	C30 C31	2,17	-0,46	-23,15	0,19	
(3,-1)	BCP	C33 C31	2,25	-0,487	-24,89	0,19	
(3,-1)	BCP	C30 H39	1,86	-0,309	-23,25	0,02	
(3,-1)	BCP	C31 H32	1,86	-0,309	-23,06	0,01	
(3,-1)	BCP	C36 C29	2,17	-0,464	-23,05	0,2	
(3,-1)	BCP	C34 C33	2,2	-0,469	-23,86	0,19	
(3,-1)	BCP	C33 H40	1,86	-0,309	-22,9	0,02	
(3,-1)	BCP	C36 C34	2,13	-0,444	-22,3	0,2	
(3,-1)	BCP	H35 C34	1,86	-0,309	-23,08	0,02	
(3,-1)	BCP	H41 C36	1,85	-0,308	-22,89	0,02	
(3,-1)	BCP	H37 C27	1,88	-0,311	-23,51	0,01	
(3,-1)	BCP	H38 C28	1,86	-0,307	-22,99	0,02	
(3,-1)	BCP	Se42 C14	1,04	-0,156	-4,02	0,18	
(3,-1)	BCP	C44 C45	2,13	-0,448	-22,29	0,19	
(3,-1)	BCP	C49 C44	2,17	-0,464	-23,05	0,2	
(3,-1)	BCP	Se43 Se42	0,74	-0,092	-1,04	0,02	
(3,-1)	BCP	C44 Se43	1,04	-0,154	-3,91	0,17	

(3,-1)	BCP	C46 C45	2,17	-0,46	-23,16	0,19
(3,-1)	BCP	C47 C46	2,25	-0,487	-24,88	0,19
(3,-1)	BCP	C48 C47	2,2	-0,469	-23,86	0,19
(3,-1)	BCP	C48 C49	2,13	-0,444	-22,31	0,2
(3,-1)	BCP	C45 H50	1,87	-0,309	-23,25	0,02
(3,-1)	BCP	C46 H51	1,86	-0,309	-23,04	0,01
(3,-1)	BCP	H52 C47	1,85	-0,309	-22,88	0,02
(3,-1)	BCP	C55 C7	2,1	-0,434	-21,38	0,2
(3,-1)	BCP	Se54 Se53	0,74	-0,092	-1,04	0,02
(3,-1)	BCP	C55 Se53	1,04	-0,156	-3,97	0,18
(3,-1)	BCP	C57 C56	2,09	-0,429	-21,54	0,19
(3,-1)	BCP	C58 C57	2,26	-0,493	-25,01	0,2
(3,-1)	BCP	C59 C9	2,05	-0,41	-20,76	0,18
(3,-1)	BCP	C60 C55	2,19	-0,473	-23,55	0,18
(3,-1)	BCP	C59 C60	2,17	-0,46	-23,07	0,2
(3,-1)	BCP	Se54 C61	1,04	-0,154	-3,9	0,17
(3,-1)	BCP	C61 C62	2,13	-0,448	-22,29	0,19
(3,-1)	BCP	C62 C63	2,17	-0,46	-23,16	0,19
(3,-1)	BCP	C63 H64	1,86	-0,309	-23,07	0,01
(3,-1)	BCP	C65 C63	2,25	-0,487	-24,9	0,19
(3,-1)	BCP	C68 C61	2,17	-0,464	-23,02	0,19
(3,-1)	BCP	C66 C65	2,2	-0,469	-23,87	0,19
(3,-1)	BCP	C68 C66	2,13	-0,444	-22,32	0,19
(3,-1)	BCP	H67 C66	1,86	-0,309	-23,14	0,01
(3,-1)	BCP	C56 H69	1,86	-0,31	-23,19	0,02
(3,-1)	BCP	C57 H70	1,86	-0,309	-23,09	0,01
(3,-1)	BCP	H71 C58	1,86	-0,309	-22,98	0,02
(3,-1)	BCP	H72 C59	1,87	-0,31	-23,25	0,02
(3,-1)	BCP	H73 C60	1,86	-0,307	-23,06	0,02
(3,-1)	BCP	C62 H74	1,86	-0,309	-23,23	0,02
(3,-1)	BCP	C65 H75	1,86	-0,309	-22,92	0,02
(3,-1)	BCP	H76 C68	1,86	-0,308	-22,99	0,02
(3,-1)	BCP	H77 C48	1,86	-0,309	-23,07	0,02
(3,-1)	BCP	H78 C49	1,85	-0,308	-22,89	0,02
(3,-1)	BCP	C81 C56	2,09	-0,434	-21,38	0,19
(3,-1)	BCP	Se80 Se79	0,74	-0,092	-1,03	0,01
(3,-1)	BCP	C81 Se79	1,04	-0,157	-3,98	0,19
(3,-1)	BCP	C82 C58	2,05	-0,41	-20,76	0,18
(3,-1)	BCP	C83 C81	2,19	-0,472	-23,57	0,18
(3,-1)	BCP	C82 C83	2,17	-0,46	-23,05	0,2
(3,-1)	BCP	Se80 C84	1,03	-0,154	-3,92	0,17
(3,-1)	BCP	C84 C85	2,13	-0,448	-22,28	0,19
(3,-1)	BCP	H92 C82	1,86	-0,31	-23,16	0,02
(3,-1)	BCP	C85 C86	2,17	-0,46	-23,14	0,19
(3,-1)	BCP	C86 H87	1,86	-0,309	-23,14	0,01
(3,-1)	BCP	C88 C86	2,25	-0,487	-24,87	0,19
(3,-1)	BCP	C91 C84	2,17	-0,464	-23,07	0,2
(3,-1)	BCP	C89 C88	2,2	-0,469	-23,86	0,19
(3,-1)	BCP	C91 C89	2,13	-0,444	-22,3	0,2

(3,-1)	BCP	H90 C89	1,86	-0,309	-23,08	0,01
(3,-1)	BCP	C85 H94	1,86	-0,308	-23,19	0,02
(3,-1)	BCP	H93 C83	1,85	-0,306	-22,93	0,02
(3,-1)	BCP	C88 H95	1,85	-0,309	-22,86	0,02
(3,-1)	BCP	H96 C91	1,85	-0,308	-22,91	0,02

Figure 10_esi. Selected critical points (BCP) [3, -1] in 2.

 Table 10_esi.
 Selected critical points [3, -1] for 2.

_		1			L, e·Å-		
Туре	Name	Atoms	Rho, e∙Å-3	V, a.e.	5	Ellip	kcal/mol
(3,-1)	BCP	C3 C15	0,02	-0,001	0,19	0,38	-0,28
(3,-1)	BCP	C4 F16	0,02	-0,001	0,27	1,16	-0,41
(3,-1)	BCP	174 H35	0,05	-0,003	0,46	0,10	-0,96
(3,-1)	BCP	H71 I74	0,05	-0,003	0,49	0,14	-0,99
(3,-1)	BCP	H38 F22	0,04	-0,003	0,59	0,25	-1,00
(3,-1)	BCP	Se41 Se55	0,05	-0,003	0,45	0,02	-1,00
(3,-1)	BCP	H14 F16	0,04	-0,004	0,68	0,04	-1,16
(3,-1)	BCP	Se61 Se55	0,06	-0,004	0,53	0,11	-1,26
(3,-1)	BCP	Se30 H39	0,08	-0,006	0,82	0,64	-2,03
(3,-1)	BCP	Se61 H71	0,08	-0,007	0,81	0,61	-2,05
(3,-1)	BCP	C4 C3	2,19	-0,462	-23,56	0,19	
(3,-1)	BCP	F16 C15	1,80	-0,806	-1,63	0,02	
(3,-1)	BCP	Se55 Se30	0,73	-0,090	-1,00	0,03	
(3,-1)	BCP	Se30 C31	1,04	-0,155	-4,00	0,18	
(3,-1)	BCP	Se75 Se61	0,73	-0,090	-1,00	0,03	
(3,-1)	BCP	Se75 H66	0,09	-0,007	0,86	0,43	
(3,-1)	BCP	Se75 C76	1,04	-0,155	-4,01	0,17	

The powder pattern of **2** was measured on a Bruker D8 Advance Vario diffractometer at room temperature with LynxEye detector and Ge(111) monochromator, λ (Cu K α 1) = 1.54060 Å, $\theta/2\theta$ scan from 2° to 90°, step size 0.0104788°. The measurement was performed in transmission mode, with the sample deposited between two Kapton films. Quantitative phase analysis was performed with Rietveld method as implemented in Bruker TOPAS5 (TOPAS 5 UserManual; BrukerAXS GmbH: Karlsruhe, Germany, 2015.). According to the analysis the sample contains 98% of **2** and 2% of p-DITFB.

Experimental and calculated powder patterns for 2.

Refined lattice parameters for 2

a (Å)	10.18697(17)
b (Å)	5.75575(7)
c (Å)	26.9217(4)
beta (°)	93.7761(11)

Lattice parameters for 2 from single crystal experiment

a (Å)	10.1178(7)
b (Å)	5.6743(4)
c (Å)	26.6419(18)
beta (°)	94.6130(10)

Refined lattice parameters for p-DITFB

a (Å)	6.2528(2)
b (Å)	11.6093(5)
c (Å)	5.9208(3)
beta (°)	92.621(3)

Lattice parameters for *p*-DITFB single crystal (ZZZAVM02, Se Ye Oh, C.W.Nickels, F.Garcia, W.Jones, T.Friscic, *CrystEngComm* (2012), **14**, 6110)

a (Å)	6.268(3)
b (Å)	11.639(5)
c (Å)	5.929(2)
beta (°)	92.70(3)

Rexp: 1.98 Rwp: 4.46 Rp: 2.85 GOF: 2.2.

 Table 11 esi. Intramolelular distances and angles in cocrystal 1.

Distances, Å

Te1 Te2 2.7161(3). Te1 C1 2.1257(12). Te2 C7 2.124(3). C1 C6 1.3900 . C1 C2 1.3900. C4 C3 1.3900. C4 C5 1.3900. C4 H4 0.9300. C3 C2 1.3900. C6 C5 1.3900. C7 C8 1.387(4). C7 C12 1.393(4). C11 C10 1.380(4). C11 C12 1.385(4). C8 C9 1.391(4). I1 C13 2.099(2). F4 C18 1.344(3). F1 C14 1.346(3). C14 C13 1.384(3). C14 C18 1.381(4) C13 C18 1.383(4).

Angles, ° C1 Te1 Te2 95.97(5). C7 Te2 Te1 100.54(6). C6 C1 Te1 119.0. C2 C1 Te1 121.0. C2 C1 C6 120.0. C5 C4 C3 120.0. H4 C4 C3 120.00(6). H4 C4 C5 120.00(6). C2 C3 C4 120.0. H3 C3 C4 120.00(6). H3 C3 C2 120.00(6). C5 C6 C1 120.0. H6 C6 C1 120.00(6). H6 C6 C5 120.00(6). C6 C5 C4 120.0. H5 C5 C4 120.00(6). H5 C5 C6 120.00(6). C8 C7 Te2 120.32(18). C12 C7 Te2 120.22(19). C12 C7 C8 119.4(2). C12 C11 C10 120.1(2). C9 C8 C7 119.9(2). C3 C2 C1 120.0. C10 C9 C8 120.3(2). C9 C10 C11 120.1(3). C11 C12 C7 120.2(2). C13 C14 F1 120.1(2). C18 C14 F1 118.7(2) C18 C14 C13 121.2(2) C14 C13 I1 120.94(19). C18 C13 I1 121.46(17). C18 C13 C14 117.6(2). C14 C18 F4 118.4(2) C13 C18 F4 120.3(2). C13 C18 C14 121.2(2).

 Table 12_esi.
 Intramolelular distances and angles in cocrystal 2.

Distances, Å

Se2 Se1 2.31335(15). Se2 C7 1.93399(14). Sel C1 1.93392(17). F1 C14 1.34545(12). F4 C18 1.34546(11). C4 C5 1.38609(13). C4 C3 1.38548(9). C5 C6 1.38465(16). C10 C11 1.38195(9). C10 C9 1.37708(11). C3 C2 1.39173(16). C7 C8 1.38353(9). C7 C12 1.38162(11). C11 C12 1.37767(11). C1 C6 1.38998(9). C1 C2 1.38195(13). C13 C18 1.38474(12). C13 C14 1.37566(11). C8 C9 1.39426(11). C18 C14 1.38165(10)

Angles, °

C7 Se2 Se1 102.189(2)... C1 Se1 Se2 103.036(4)... C3 C4 C5 119.390(9) . . H4 C4 C5 120.305(4) . . H4 C4 C3 120.305(6) . . C6 C5 C4 120.630(4) . . H5 C5 C4 119.685(4) . . H5 C5 C6 119.685(2) . . C9 C10 C11 119.186(4)... H10 C10 C11 120.407(3)... H10 C10 C9 120.407(2) . . C2 C3 C4 120.462(7)... C8 C7 Se2 115.833(5)... C12 C7 Se2 123.773(3) . . C12 C7 C8 120.389(5)... C12 C11 C10 120.810(6). C6 C1 Se1 116.370(7)... C2 C1 Se1 123.298(4)... C2 C1 C6 120.331(9) . . C18 C13 I1 121.244(4) . . C14 C13 I1 121.266(6) . . C14 C13 C18 117.488(5)... C9 C8 C7 119.036(5)... C11 C12 C7 119.756(4) . . C13 C18 F4 120.532(5)... C14 C18 F4 118.415(7) C14 C18 C13 121.053(5) C1 C6 C5 119.575(7)... C1 C2 C3 119.608(4)... C8 C9 C10 120.807(4) . . C13 C14 F1 120.471(5)... C18 C14 F1 118.068(5) C18 C14 C13 121.459(7)