Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

The influence of dopant concentration and grain size on the ability to temperature sensing using nanocrystalline MgAl₂O₄:Co²⁺, Nd³⁺ luminescent thermometers

A. Kobylinska, K. Kniec, L Marciniak*

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland

* corresponding author: <u>l.marciniak@intibs.pl</u>

KEYWORDS luminescent thermometry, nanocrystals, cobalt, optical windows, spinels

Figure 1. X - ray diffraction patterns of MgAl₂O₄: Co²⁺ nanoparticles with various cobalt concentration annealed at 850 $^{\circ}$ C

e 2. X - ray diffraction patterns of MgAl₂O₄: Nd³⁺ nanoparticles with various neodymium concentration annealed at 850 $^{\circ}$ C

Figure 3. Absorption spectra of MgAl₂O₄: Co²⁺ with different cobalt concentration annealed at 850°C

Figure 4. Absorption spectra of MgAl₂O₄: 0.01% Co²⁺ annealed at 850°C, 900°C, 1000°C, 1100°C

Figure 5. The comparison of emission spectra of $MgAl_2O_4$: Co^{2+} with various cobalt concentration annealed at 850°C and measured at -150°C

Figure 6. The influence of the temperature on the emission intensity of Co^{2+} in MgAl₂O₄: 0.01% Co^{2+} , 5% Nd³⁺ annealed at various temperatures

Figure 7. The influence of the temperature on the emission intensity of Nd³⁺ in MgAl₂O₄: 0.01% Co²⁺, 5% Nd³⁺ annealed at various temperatures

Figure 8. The influence of the temperature on the emission intensity of Co²⁺ in MgAl₂O₄: 0.01% Co²⁺, X% Nd³⁺ with various neodymium concentration

Figure 9. The influence of the temperature on the emission intensity of Nd³⁺ in MgAl₂O₄: 0.01% Co²⁺, X% Nd³⁺ with various neodymium concentration

Figure S10. Thermal stability of MgAl₂O₄: 0.02% Co²⁺, 5% Nd³⁺ nanocrystals during cooling (-50°C) and heating (50°C) cycles