Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

Stable Polypyridinopyridine-Red Phosphorus Composite as a Superior Anode for

Long-Cycling Lithium-Ion Batteries

Xibang Chen^a, Jingyi Qiu^b, Yimeng Wang^a, Furong Huang^a, Jing Peng^a, Yonggang Liu^b, Jiuqiang Li^a, Maolin

Zhai^a*

^aBeijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^bInstitute of Chemical Defense, Beijing 100191, China

Table S1 FTIR wavenumbers (cm⁻¹) and assignments for PAN, RP, PPyPy, PPyPy-RP and PPyPy/RP, respectively.

Wave number (cm ⁻¹)	Bonds	Wave number (cm ⁻¹)	Bonds
2942.0	С - Н	1245.5	C = N
2245.5	C ≡ N	1075.1	P - O
1630.0	C = C	1040.2	P- P
1451.9	CH ₂	978.7	P - O - C
1385.3	P = 0	652.4	P - C
1361.5	C - C	503.4	P- C=N

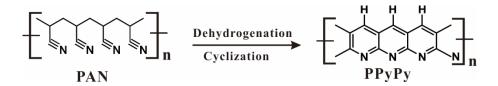


Fig. S1 Schematic illustration of the formation of PPyPy from PAN under dehydrogenation and cyclization process

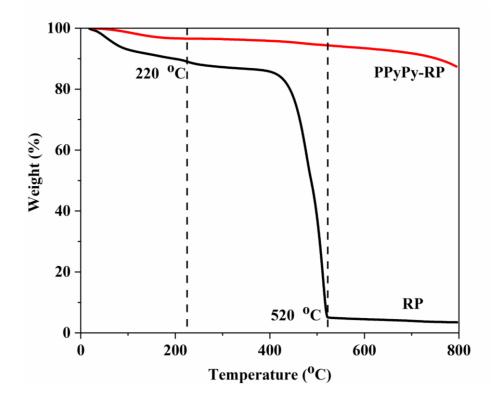


Fig. S2 TGA curves of the PPyPy-RP and pure red phosphorus. The content of pure phosphorus in the PPyPy-RP

calculated from the TGA is 1.9 wt%. This analysis was taken in N_2 atmosphere with a heating rate of 10 °C min⁻¹.

To calculate the specific capacity contribution of phosphorus in the electrodes, a formula can be carried out as:

$$C_P = (C_C - C_S) / W_P \qquad (1)$$

where the capacity contribution of Substrate in the electrode is calculated by the following equation as:

$$C_{S} = C_{S} \times W_{S}$$
 (2)

Where the C_c and C^s are the capacity of Composite and Substrate, while W_P and W_S are the percentage of

Phosphorus and Substrate, respectively.

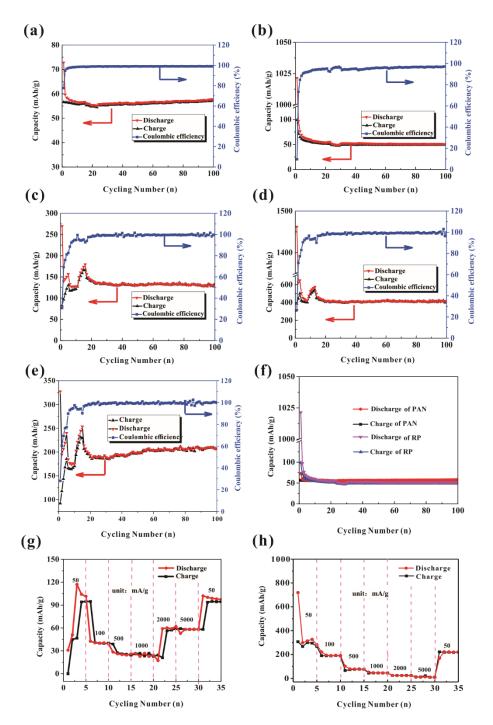


Fig. S3 Cycling stability and Coulombic efficiency of corresponding electrode for LIBs cycled 100 cycles at a current density of

100 mA/g; PAN (a), RP (b), PPyPy (c), PPyPy/RP (d), acetylene black (e); Compare discharge/charge capacities of PAN and RP at a

current density of 100 mA/g (f); Rate capabilities of PAN (g) and AC (h) electrode for LIBs cycled at various current densities.

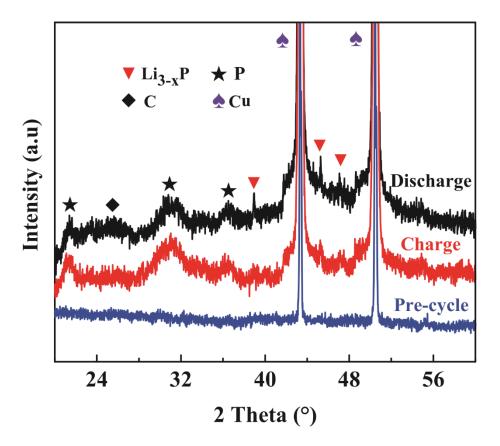


Fig. S4 The XRD patterns with the corresponding pre-cycle and first charge-discharge of PPyPy-RP as anode of LIBs;

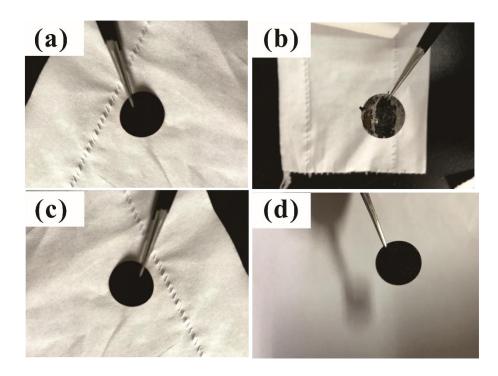


Fig. S5 The photographs of RP electrode and PPyPy-RP electrode after different discharge. Pre-cycle RP electrode (a) and after

100 th discharge (b); Pre-cycle PPyPy-RP electrode (c) and after 2000 th discharge (d)

Table S2 The Re, Rf, and Rct were obtained by fitting experimental data using the corresponding equivalent circuit (Figure. 6c) for

	$R_e(\Omega)$	$R_f(\Omega)$	R _{ct} (Ω)
RP	1.53	147	140
РРуРу	1.23		72.5
PPyPy-RP	1.73		77.0
PPyPy/RP	1.68	61.7	27.5

RP, PPyPy, PPyPy-RP and PPyPy/RP cell pre-cycling.

Table S3 The Re, Rf, and Rct were obtained by fitting experimental data using the corresponding equivalent circuit (Figure. 5c)

	$R_{e}(\Omega)$	R _f (Ω)	R _{ct} (Ω)
Pre-cycle-PPyPy-RP	1.73		77.0
1 st-PPyPy-RP	1.51	6.59	33.2
20 th- PPyPy-RP	1.82	4.77	8.75
100 th- PPyPy-RP	1.85	21.3	16.4

for PPyPy-RP cell after different cycles.

Electrode material	Current density	Initial Coulombic	Reversible capacity	
	(mA/g)	Efficiency (%)	(mAh/g phosphorus)	Reference
			/Cycles	
P/CNTs	130	74.3	998.5/50	[1]
P/graphite (P-C bond)	500	85.5	1849/100	[2]
P/Carbon Matrix	300	80	1370/100	[3]
P-Graphene				
Nanosheet	130	84	1283/300	[4]
P/carbon				
cloth/graphene oxide	259.6	82.7	910/200	[5]
Densely Packed				
Phosphorene-				
Graphene	500	60.2	725/200	[6]
	100	86.2	1870.2/100	
ΡΡγΡγ-RΡ	1000	84.4	1632.8/800	This work
	5000	67.9	518.3/2000	

Table S4 Electrochemical performance of phosphorus–carbon composites in lithium half-cells

References

[1] Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh and K. T. Lee, *Adv. Mater.*, 2013, **25**, 3045-3049.

[2] J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang and Y. Cui, Nano Lett., 2016, 14, 4573-4580.

[3] J. Li, L. Wang, X. He and J. Wang, ACS Sustainable Chemistry & Engineering, 2016, 4, 4217-4223.

[4] Z. Yu, J. Song, M. L. Gordin, R. Yi, D. Tang and D. Wang, *Adv Sci (Weinh)*, 2015, **2**, 1400020.

[5] Y. Du, Y. Tang and C. Chang, J. Electrochem. Soc., 2016, **163**, A2938-A2942.

[6] Y. Zhang, X. Rui, Y. Tang, Y. Liu, J. Wei, S. Chen, W. R. Leow, W. Li, Y. Liu, J. Deng, B. Ma, Q. Yan and X. Chen, *Adv. Energy Mater.*, 2016, **6**, 1502409.