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Characterization
X-ray diffraction (XRD) was recorded in the 2θ range of 2°~80° with Cu Kα 

radiation (λ=1.5418 Å) using a D/max-2500 diffractometer (Rigaku Corp., Japan). 
The surface morphology of the MOFs material was observed by a scanning electron 
microscope (SEM, Zeiss, ULTRA Plus, Germany). Sputter the material with the gold 
coating before observation. Thermogravimetric analysis (TGA) was performed under 
a nitrogen atmosphere using a Perkin-Elmer DETLASERLES TGA7 
thermogravimetric analyzer. The temperature was set from room temperature to 1073 
K and the heating rate was 283 K/min. UV-Vis spectra were obtained on a dual-beam 
UV-Vis spectrophotometer from Procalix TU-1901 (Beijing General Analytical 
Instrument Co., Ltd). The results of the corresponding characterization mentioned 
above could be seen in Figs. S1-9.

UV-vis spectral analysis
The UV-vis spectra of BDC and the prepared MOFs materials were tested by UV-

vis diffuse reflectance spectroscopy, as shown in Fig. S1. It can be seen that the two 
characteristic peaks of BDC were at around 264 and 310 nm. The characteristic peaks 
of MIL-53(Al) were at 224, 256 and 290 nm and MIL-53(Al) exhibited almost no 
absorption in the visible region, which was similar to a previous report[1]. It was found 
that MIL-53(Fe) exhibited strong absorption bands in the range of 200-600 nm. The 
characteristic absorption peaks were at about 228 and 500 nm, which may be ascribed 
to absorption induced by ligand-to-metal charge transfer (LMCT) of O(II) to Fe(III)[2]. 
It can be also seen that MIL-53(Fe) exhibited strong absorption in the visible region. 
However, the MIL-53(Fe, Al) exhibited a characteristic peak at 225 nm, which was 
close to the first characteristic peak of MIL-53(Al), and it showed no absorption in the 
visible region. The analyses above showed that the band gap energy of the three 
MOFs material was different from each other, indicated the MOFs materials were 
successfully prepared.
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Fig. S1 UV-vis spectra of BDC and the prepared MOFs materials.

FTIR spectra analysis
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Fig. S2 FTIR spectra of BDC and the prepared MOFs materials.

FTIR spectra of BDC and the synthesized MOFs materials were shown in Fig. S2. 
The absorption bands at 1687, and 1507 cm-1 (were ascribed to the asymmetric 
stretching vibration of the carboxyl group of BDC and the absorption band at 1418 
cm-1 was assigned to symmetric stretching vibration of carboxyl group[3-6]. The peaks 
at 1687 and 1507 cm-1 respectively shifted to 1693 and 1515 cm-1 in MIL-53(Fe), 
1612 and 1506 cm-1 in MIL-53(Fe, Al), and 1678 and 1507 cm-1in MIL-53(Al). In 
addition, the band at 768 cm-1 resulted from aromatic ring deformation shifted to 
smaller wavenumbers in the synthesized materials (766 cm-1) in MIL-53(Fe, Al), 
MIL-53(Fe), and 760 cm-1 in MIL-53(Al) and the intensity remarkably changed. 
Furthermore, the spectra of MIL-53(Al) was similar to MIL-53-(2) of our previous 
report[6]. The presence of absorption band at 566 cm-1 of MIL-53(Fe) (599 cm-1 of 
MIL-53(Al), 584 cm-1 of MIL-53(Fe, Al)) suggested the vibration of metal-oxo bond 



formation which was formed between the carboxylic group of BDC and the Fe(III) or 
Al(III)[5, 7]. The information mentioned above indicated that the MOFs materials were 
successfully prepared.

In addition, the infrared before and after adsorption showed in Fig. S3 and Fig. S4 
of the materials MIL-53(Al) and MIL-53(Fe), were similar to the adsorption of 
glutathione by MIL-53(Fe, Al) in the paper.
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Fig. S3 FTIR spectra of (a) glutathione, (b) MIL-53(Al) and (c) glutathione loaded MIL-53(Al).
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Fig. S4 FTIR spectra of (a) glutathione, (b) MIL-53(Fe) and (c) glutathione loaded MIL-53(Fe).

XRD analysis
The XRD patterns of MIL-53 (Fe, Al), MIL-53 (Fe) and MIL-53 (Al) were shown 

in Fig. S5. It can be seen that MIL-53(Fe) showed some strong diffraction peaks at 
24.1°, 33.1°, 35.6°, and 40.1°, indicating the material had good crystallinity. But the 
pattern was not consistent with those reported[8,9], indicating the structure may be 
different due to different synthesized method. The materials in this study were 
prepared by a facile reflux method while MIL-53(Fe) reported in the references were 
prepared through a mild solvothermal process. However, the diffraction peaks of 
MIL-53 (Al) at 8.6°, 15.1°, 24.6°, 32.9°, 41.2° were in good agreement with the 
reference result[9,10,11], suggesting the successful formation of this material. Compared 
with MIL-53(Al), MIL-53(Fe, Al) only displayed some weaker peaks, indicating it 
possessed relatively poor crystallinity. However, the presence of two characteristic 
peaks at 33.1° and 35.6° exhibited that the MIL-53(Fe, Al) has been successfully 



prepared.
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Fig. S5 XRD patterns of the prepared MOFs materials.

Thermogravimetric analyses
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Fig. S6 (a) TGA curves and (b) DTA curves.

The TGA and DTA curves of MIL-53(Fe, Al), MIL-53(Fe) and MIL-53(Al) were 
shown in Fig. S6. The weight loss before 300 °C for the three MOFs materials was 
ascribed to the removal of water molecules adsorbed[12]. MIL-53(Al) was stable up to 
about 460 °C as the framework collapsed because of the elimination of BDC linkers 
from the framework resulting in the formation of Al2O3

[3], while MIL-53(Fe, Al) was 
stable up to about 420 °C and the weight of MIL-53(Fe) was reduced after 300 °C, 
indicating the thermal stability of the three MOFs materials were different from each 
other. The shape of the TGA curve of MIL-53(Fe) was similar to a previous report[9]. 
The thermal stability was in the order of MIL-53(Fe) < MIL-53(Fe, Al) < MIL-
53(Al). The residues were mainly inorganic matter and the weight of residues was in 
the order of MIL-53(Al) < MIL-53(Fe) < MIL-53(Fe, Al). The difference in thermal 
properties may hint the difference in corresponding structures, leading to different 
adsorption properties for glutathione. The DTA curve of MIL-53(Fe) was similar to 
that of MIL-53(Fe, Al), while the DTA curve of MIL-53(Al) was different from the 
other two MOFs materials, which was in line with the analyses of TGA curves.

Rheological properties
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Fig. S7 The relationship between storage modulus and angular frequency.

In order to evaluate the mechanical properties of the prepared MOFs materials, 
rheological properties were studied in aqueous ethanol, and the relationship between 
storage modulus and angular frequency was shown in Fig. S7. It can be obviously 
seen that the storage modulus of the prepared MOFs materials remained unchanged 
and overlaps each other until the angular frequency is 20 rad/s. As the angular 
frequency exceeded to 20 rad/s, the storage modulus rapidly increased except MIL-
53(Fe), and the storage modulus of MIL-53(Al) was close to that of MIL-53(Fe, Al) 
with angular frequency increasing, indicating the mechanic strength of MIL-53(Al) 
was similar to that of MIL-53(Fe, Al) and that of MIL-53(Fe) was weakest. It was 
may be due to the reaction between Fe(III) and carboxyl group was weaker than that 



between Al(III) and a carboxyl group, leading to a difference in storage modulus[13].

SEM images
The microstructures of MIL-53(Fe), MIL-53(Al) and MIL-53(Fe, Al) were 

investigated, as shown in Fig. S8. MIL-53(Fe) displayed a polyhedral or small 
pseudo-spherical structure, which was similar to a previous report[8] (Fig. S6 (a)).For 
MIL-53(Al), it exhibited a rodlike structure and the rodlike particles were tended to 
aggregate together and form a big sphere(Fig. S6 (b)). However, MIL-53(Fe, Al) 
showed a large pyramid structure with a length of several micrometers, which was 
similar to the previously reported observation of MIL-53(Fe)[14] (Fig. S6 (c)). The 
morphology of the three MOFs materials was different from each other, indicating 
corresponding structures were different.

Fig. S8 (a) SEM image of MIL-53(Fe), (b) SEM image of MIL-53(Al), (c) SEM image of MIL-
53(Fe, Al), and (d) particle size distribution of MIL-53(Fe, Al).

Nitrogen adsorption-desorption isotherms and pore size distribution
The surface area and porous structure of MIL-53(Al), MIL-53(Fe, Al) and MIL-

53(Al) were measured by N2 adsorption-desorption isotherms at 77 K, as shown in 
Fig. S9(a). At lower relative pressure, the nitrogen adsorbed increased sharply, 
indicating a high affinity for N2, and as the relative pressure was in the range of 0.4 to 
0.8, hysteresis loop appeared, suggesting the existence of mesopores and micropores 
in MIL-53(Fe, Al)[15, 16]. The BET surface area and total pore volume were computed 
to be in Table 3. From the pore size distribution in Fig. S9(b), it can be seen that the 
pores of MIL-53(Fe, Al) mainly lied in the range of 2 to 5 nm and the pore size 
distribution was narrow. The average pore width of MIL-53(Fe, Al) was 6.51 nm, 
which was calculated according to 4V/A by BET, and on the basis of Fig. S8(b), the 
pores of the MOFs materials were mainly mesopores and the BJH mesopore size 
distribution curve had a pore width centered at about 3.8 nm. MIL-53 (Al) adsorbed 
the amount of N2 with increasing pressure over the entire pressure range. The sharp 



increase in the amount of N2 adsorbed can be observed as the pressure in the range of 
0.6-1.0. The phenomenon indicated that the material MIL-53(Al) mainly contained 
mesoporous and microporous structure[17]. The adsorption amount of MIL-53(Fe) for 
N2 was almost constant with the increase of pressure, while the pressure was in the 
range of 0.8-1.0, the pressure adsorption of MIL-53(Fe) for N2 increases slowly[18]. 
Meantime, there was no hysteresis loop indicating no capillary evaporation. It can be 
seen that a mesoporous structure mainly contained in the material of MIL-53(Fe). The 
BET surface area and pore volume of the three MOFs materials were calculated, as 
shown in Table 3. BET surface area was in the order of SMIL-53(Al)>SMIL-53(Fe, Al)>SMIL-

53(Fe), average pore width of DMIL-53(Fe)>DMIL-53(Fe, Al)>DMIL-53(Al) and Pore volume of 
VMIL-53(Al)>VMIL-53(Fe, Al)>VMIL-53(Fe). The BET surface area of the three materials is 
exactly the same as the order of the pore volume.
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Fig. S9 (a) Nitrogen adsorption-desorption isotherms of the MIL-53(Al), MIL-53(Fe, Al) and 
MIL-53(Fe), (b) pore width distribution of the MIL-53(Al), MIL-53(Fe) and MIL-53(Fe, Al).
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