## **Supporting information**

## Evaluating the dialysis time required for carbon dots by HPLC and the properties of the carbon dots after HPLC fractionation

Chou-Yen Chen Yi-Hua Tsai and Chih-Wei Chang

Department of Chemistry, National Changhua University of Education, Changhua, 50007, Taiwan

## **Table of contents**

| Fig. S <sub>1</sub> : (a) The UV-HPLC and (b)the FL-HPLC of the dialysate (blue line) and the                              |
|----------------------------------------------------------------------------------------------------------------------------|
| citric acid (gray line). The dialysate was collected after 3 hours dialysis3                                               |
| Fig. S <sub>2</sub> : The FL-HPLC of the C-dots dialyzed using (a) MWCO=1.0 kDa and (b)                                    |
| MWCO=0.5-1.0 kDa membranes4                                                                                                |
| Fig. S <sub>3</sub> : The TEM images of (a) the C-dots ( $\alpha$ ), (b) the C-dots ( $\beta$ ) and (c) the C-dots         |
| ( $\gamma$ ). The averaged radius of C-dots indicates in the figures                                                       |
| Fig. S <sub>4</sub> : The XPS C1s spectra of a:C-dots ( $\alpha$ ); b:C-dots ( $\beta$ ) and c:C-dots( $\gamma$ ). The XPS |
| survey spectrum of each C-dots is indicated in the inset6                                                                  |
| Fig. S <sub>5</sub> : The fluorescence decay dynamics of C-dots in the absence and the presence                            |
| of $Hg^{2+}$ ions                                                                                                          |
| Fig. S <sub>6</sub> : (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-                              |
| dots(α)8                                                                                                                   |
| Fig. S <sub>7</sub> : (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-                              |
| dots(β)9                                                                                                                   |
| Fig. S <sub>8</sub> : (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-                              |
| dots(γ)10                                                                                                                  |
| Table S <sub>1</sub> : The fitting parameters of the fluorescence lifetime, the fluorescence                               |
| anisotropy decay, and fluorescence quenching experiments of C-dots11                                                       |



Fig. S<sub>1</sub>: (a) The UV-HPLC and (b)the FL-HPLC of the dialysate (blue line) and the citric acid (gray line). The dialysate was collected after 3 hours dialysis.



Fig. S<sub>2</sub>: The FL-HPLC of the C-dots dialyzed using (a) MWCO=1.0 kDa and (b) MWCO=0.5-1.0 kDa membranes.



Fig. S<sub>3</sub>: The TEM images of (a) the C-dots ( $\alpha$ ), (b) the C-dots ( $\beta$ ) and (c) the C-dots ( $\gamma$ ). The averaged radius of C-dots indicates in the figures.



Fig. S<sub>4</sub>: The XPS C1s spectra of a:C-dots ( $\alpha$ ); b:C-dots ( $\beta$ ) and c:C-dots( $\gamma$ ). The XPS survey spectrum of each C-dots is indicated in the inset.



Fig. S<sub>5</sub>: The fluorescence decay dynamics of C-dots in the absence and the presence of  $\mathrm{Hg}^{2^+}$  ions.



Fig. S<sub>6</sub>: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots( $\alpha$ )



Fig. S<sub>7</sub>: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots( $\beta$ )



Fig. S<sub>8</sub>: (a) The TEM image and (b) the energy dispersive x-ray spectra of the C-dots( $\gamma$ )

|                                                             |                                                                    | $C$ -dots( $\alpha$ ) | $C$ -dots( $\beta$ ) | $C$ -dots( $\gamma$ ) |
|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|----------------------|-----------------------|
|                                                             | $\tau_1(a_1)$                                                      | 0.28 ns (0.07)        | 0.24 ns (0.05)       | 0.26 ns (0.04)        |
| <sup>a</sup> Fluorescence                                   | $\tau_{2}(a_{2})$                                                  | 1.98 ns (0.24)        | 1.71 ns (0.24)       | 1.96 ns (0.24)        |
| decay                                                       | $\tau_{3}(a_{3})$                                                  | 6.64 ns (0.69)        | 6.40 ns (0.70)       | 6.65 ns (0.71)        |
|                                                             | $\tau_{\rm average}$                                               | 3.62 ns               | 3.18 ns              | 3.08 ns               |
| Fluorescence<br>quantum yield                               | $\Phi_{\rm F}$                                                     | 0.91%                 | 1.03%                | 0.77%                 |
| <sup>b</sup> Fluorescence<br>anisotropy                     | $\tau_{ani}/ns$                                                    | 0.46 ns               | 0.53 ns              | 0.55 ns               |
| Fluorescence                                                | $K_{a}(M^{-1})$                                                    | $6.8 \times 10^4$     | $2.9 \times 10^{4}$  | $3.6 \times 10^4$     |
| quenching                                                   | κ                                                                  | 0.27                  | 0.55                 | 0.55                  |
| <sup>a</sup> I(t) = $\sum_{i=1}^{3} a_i \tau_i, \tau_{ave}$ | $_{\text{trage}} = \sum_{i=1}^{3} \frac{a_i \tau_i^2}{a_i \tau_i}$ |                       |                      |                       |
|                                                             |                                                                    |                       |                      |                       |

Table  $S_1$ : The fitting parameters of the fluorescence lifetime, the fluorescence anisotropy decay, and fluorescence quenching experiments of C-dots