Supramolecular tripodal Au(I) assemblies in water. Interactions with pyrene fluorescent probe.

Andrea Pinto,^{a,b} Guillem Hernández,^a Raquel Gavara,^a Elisabet Aguiló,^a Artur J. Moro,^c Gabriel Aullón,^a Marc Malfois,^d João Carlos Lima,^c Laura Rodríguez.^{a,b,*}

^a Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. Tel.: +34 934039130. e-mail: <u>laura.rodriguez@qi.ub.es</u>

^b Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona (Spain)

^c LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, Monte de Caparica, Portugal.

^d ALBA Synchrotron Light Laboratory (CELLS), Carrer de la Llum 2–26, 08290 Cerdanyola del Vallès, Barcelona, Spain

Supporting Information

Figure S1. ³¹P NMR spectrum of 1 in CDCl₃.

8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 f1 (ppm)

Figure S2. ¹H NMR spectrum of 2 in CDCl₃.

Figure S3. ³¹P NMR spectrum of 2 in D_2O .

Figure S4. ¹H NMR spectrum of **3** in D_2O .

Figure S5. ³¹P NMR spectrum of **3** in D₂O.

Figure S6. ¹H NMR spectrum of $\mathbf{1}$ in D₂O.

Figure S7. ¹H NMR spectra variations on the phosphine protons of **1** using TSP as standard reference (above) and on the area of the protons (below) with concentration. Deviations on the linearity are only observed at the highest recorded concentrations.

Figure S8. ¹H NMR spectra variations on the phosphine protons of **2** using TSP as standard reference (above) and on the area of the protons (below) with concentration in D_2O .

Figure S9. DAMMIN low-resolution structures reconstructed from SAXS patterns for

of 1 at different concentrations in water.

Figure S10. DAMMIN low-resolution structures reconstructed from SAXS patterns for of 2 at different concentrations in water.

Figure S11. DAMMIN low-resolution structures reconstructed from SAXS patterns for of **3** at different concentrations in water.

Figure S12. Optical microscopy images of fibers obtained from 1·10⁻⁴M aqueous solutions of **1** (A), **2** (B) and **3** (C). 100x magnification.

Figure S13. Absorption spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **1**. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S14. Absorption spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **2**. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S15. Absorption spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **3**. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S16. Emission spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **1**. Inset: plot of the variation of I_{372 nm} vs number of equivalents of host. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S17. Emission spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **2**. Inset: plot of the variation of I_{372 nm} vs number of equivalents of host. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S18. Emission spectra of a $1 \cdot 10^{-5}$ M solution of pyrene in the presence of increasing amounts of **3**. Inset: plot of the variation of I_{372 nm} vs number of equivalents of host. [pyrene] = $1 \cdot 10^{-5}$ M. Solvent: water. pH ~ 7.

Figure S19. DAMMIN low-resolution structures reconstructed from SAXS patterns for $1 \cdot 10^{-5}$ M solutions of 1 (top), 2 (middle) and 3 (bottom) in the presence of one equivalent of pyrene (right). The corresponding patterns of the solutions of the hosts have been also included in the left column for better comparison purposes.

Figure S20. Plot of I_1/I_3 in the emission spectra vs concentration of **1** (black dots) and fitting of the I_1/I_3 emission data, assuming a 1:1 stoichiometry (red line).

Figure S21. Plot of I_1/I_3 in the emission spectra vs concentration of **2** (black dots) and fitting of the I_1/I_3 emission data, assuming a 1:1 stoichiometry (red line).

Figure S22. Plot of I_1/I_3 in the emission spectra vs concentration of **3** (black dots) and fitting of the I_1/I_3 emission data, assuming a 1:1 stoichiometry (red line).

Figure S23. Chemical structure representation of cholate anion.

Figure S24. Optical microscopy image of dried samples of cholate hydrogel (A); 1 @ cholate (B); 2 @ cholate (C) and 3 @ cholate (D). Smaller and more brilliant aggregates are indicative of the presence of gold(I) complexes.

Figure S25. Optical microscopy image of dried samples of 1 @ cholate (A); 1 : pyrene @ cholate (B); 3 @ cholate (C) and 3 : pyrene @ cholate (D).

Figure S26. Transmission electron microscopy image of **1**: pyrene @ cholate after electron beam irradiation.