Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Syntheses, characterizations, DNA / BSA binding, and in vitro

cytostatic activity of fluorobenzenetelluronic triorganotin(IV) esters

Shuai Chen, Jia-Jia Nie, Shuo Wang, Qian-Li Li, Ru-Fen Zhang*, Yong-

Xin Li, Chun-Lin Ma*

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China

Email: macl856@163.com, macl@lcu.edu.cn

Supporting Information

Table of contents

1. X-ray crystallography (Tables S1-S6)	3
2. Structures of complexes 1-6 (Figs. S1-S6)	.12
3. Supramolecular structures of complexes 1-6 (Figs. S7-S12)	.15
4. ¹¹⁹ Sn NMR spectra of complexes 1-6 (Figs. S13-S18)	17

X-ray crystallography

Complex 1			
Sn(1)-O(3)	2.018(4)	Te(1)-O(3)	1.894(4)
Sn(1)-C(7)	2.132(10)	Te(1)-O(4)	1.924(4)
Sn(1)-C(8)	2.136(8)	Te(1)-O(2)	1.949(5)
Sn(1)-C(9)	2.146(9)	Te(1)-O(1)#1	1.972(4)
Sn(2)-O(4)	2.021(4)	Te(1)-O(1)	1.979(4)
Sn(2)-C(10)	2.120(9)	Te(1)-C(3)	2.118(7)
Sn(2)-C(11)	2.122(9)	Te(1)-Te(1)#1	3.0443(6)
Sn(2)-C(12)	2.129(7)	Te(2)-O(8)	1.900(4)
Sn(3)-O(7)	2.015(4)	Te(2)-O(7)	1.927(4)
Sn(3)-C(19)	2.122(8)	Te(2)-O(5)	1.952(4)
Sn(3)-C(21)	2.122(9)	Te(2)-O(6)#2	1.972(4)
Sn(3)-C(20)	2.149(8)	Te(2)-O(6)	1.980(4)
Sn(4)-O(8)	2.031(4)	Te(2)-C(13)	2.122(7)
Sn(4)-C(24)	2.120(7)	Te(2)-Te(2)#2	3.0383(6)
Sn(4)-C(22)	2.125(9)	O(1)-Te(1)#1	1.972(4)
Sn(4)-C(23)	2.126(7)	O(6)-Te(2)#2	1.972(4)
O(3)-Sn(1)-C(7)	108.6(3)	O(1)#1-Te(1)-O(1)	79.18(17)
O(3)-Sn(1)-C(8)	104.0(3)	O(3)-Te(1)-C(3)	96.0(2)
C(7)-Sn(1)-C(8)	118.9(4)	O(4)-Te(1)-C(3)	92.3(2)
O(3)-Sn(1)-C(9)	96.9(3)	O(2)-Te(1)-C(3)	90.7(2)
C(7)-Sn(1)-C(9)	110.8(4)	O(1)#1-Te(1)-C(3)	170.7(2)
C(8)-Sn(1)-C(9)	114.8(4)	O(1)-Te(1)-C(3)	91.7(2)
O(4)-Sn(2)-C(10)	112.5(3)	O(3)-Te(1)-Te(1)#1	132.81(14)
O(4)-Sn(2)-C(11)	108.3(3)	O(4)-Te(1)-Te(1)#1	88.97(12)
C(10)-Sn(2)-C(11)	113.0(3)	O(2)-Te(1)-Te(1)#1	89.37(14)
O(4)-Sn(2)-C(12)	96.5(3)	O(1)#1-Te(1)-Te(1)#1	39.68(11)
C(10)-Sn(2)-C(12)	113.0(3)	O(1)-Te(1)-Te(1)#1	39.51(13)
C(11)-Sn(2)-C(12)	112.3(3)	C(3)-Te(1)-Te(1)#1	131.2(2)
O(7)-Sn(3)-C(19)	107.2(3)	O(8)-Te(2)-O(7)	90.23(17)
O(7)-Sn(3)-C(21)	107.6(2)	O(8)-Te(2)-O(5)	89.13(17)
C(19)-Sn(3)-C(21)	118.5(3)	O(7)-Te(2)-O(5)	177.35(18)
O(7)-Sn(3)-C(20)	97.9(2)	O(8)-Te(2)-O(6)#2	172.15(18)
C(19)-Sn(3)-C(20)	111.5(3)	O(7)-Te(2)-O(6)#2	89.57(17)
C(21)-Sn(3)-C(20)	112.1(3)	O(5)-Te(2)-O(6)#2	90.72(16)
O(8)-Sn(4)-C(24)	99.1(3)	O(8)-Te(2)-O(6)	92.65(17)
O(8)-Sn(4)-C(22)	107.4(3)	O(7)-Te(2)-O(6)	89.36(18)
C(24)-Sn(4)-C(22)	113.7(4)	O(5)-Te(2)-O(6)	88.10(18)
O(8)-Sn(4)-C(23)	106.3(2)	O(6)#2-Te(2)-O(6)	79.49(17)
C(24)-Sn(4)-C(23)	110.4(3)	O(8)-Te(2)-C(13)	96.0(2)
C(22)-Sn(4)-C(23)	117.9(3)	O(7)-Te(2)-C(13)	91.0(2)

Table S1. Selected bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for complex 1.

Te(1)-O(3)-Sn(1)	129.5(3)	O(5)-Te(2)-C(13)	91.7(2)
Te(1)-O(4)-Sn(2)	123.47(19)	O(6)#2-Te(2)-C(13)	91.9(2)
Te(2)#2-O(6)-Te(2)	100.51(18)	O(6)-Te(2)-C(13)	171.4(2)
Te(2)-O(7)-Sn(3)	122.4(2)	O(8)-Te(2)-Te(2)#2	132.30(13)
Te(2)-O(8)-Sn(4)	126.7(2)	O(7)-Te(2)-Te(2)#2	89.31(13)
O(3)-Te(1)-O(4)	89.20(18)	O(5)-Te(2)-Te(2)#2	89.23(13)
O(3)-Te(1)-O(2)	90.1(2)	O(6)#2-Te(2)-Te(2)#2	39.85(13)
O(4)-Te(1)-O(2)	176.95(19)	O(6)-Te(2)-Te(2)#2	39.65(11)
O(3)-Te(1)-O(1)#1	93.15(18)	C(13)-Te(2)-Te(2)#2	131.71(19)
O(4)-Te(1)-O(1)#1	89.16(18)	Te(1)#1-O(1)-Te(1)	100.82(19)
O(2)-Te(1)-O(1)#1	87.93(18)	C(2)-C(3)-Te(1)	121.3(5)
O(3)-Te(1)-O(1)	172.20(19)	C(4)-C(3)-Te(1)	119.2(6)
O(4)-Te(1)-O(1)	89.26(17)	C(14)-C(13)-Te(2)	119.5(5)
O(2)-Te(1)-O(1)	91.1(2)	C(18)-C(13)-Te(2)	120.4(5)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+2; #2 -x+1,-y+1,-z+1

Complex 2				
Sn(2)-O(4)	2.020(5)	Te(1)-O(4)	1.890(6)	
Sn(2)-C(13)	2.128(9)	Te(1)-O(3)	1.905(5)	
Sn(2)-C(19)	2.135(10)	Te(1)-O(2)	1.960(5)	
Sn(2)-C(7)	2.139(10)	Te(1)-O(1)	1.958(5)	
Sn(3)-O(3)	1.976(6)	Te(1)-O(2)#1	1.965(6)	
Sn(3)-C(37)	2.117(14)	Te(1)-C(1)	2.109(9)	
Sn(3)-C(25)	2.126(11)	Te(1)-Te(1)#1	3.0240(7)	
Sn(3)-C(31)	2.132(12)	O(2)-Te(1)#1	1.965(6)	
O(4)-Sn(2)-C(13)	111.8(3)	Te(1)-O(4)-Sn(2)	122.9(3)	
O(4)-Sn(2)-C(19)	97.5(4)	O(4)-Te(1)-O(3)	91.0(2)	
C(13)-Sn(2)-C(19)	109.6(4)	O(4)-Te(1)-O(2)	92.8(2)	
O(4)-Sn(2)-C(7)	110.7(3)	O(3)-Te(1)-O(2)	88.9(3)	
C(13)-Sn(2)-C(7)	118.0(4)	O(4)-Te(1)-O(1)	87.3(2)	
C(19)-Sn(2)-C(7)	107.2(4)	O(3)-Te(1)-O(1)	176.0(3)	
O(3)-Sn(3)-C(37)	113.1(4)	O(2)-Te(1)-O(1)	87.6(2)	
O(3)-Sn(3)-C(25)	114.2(4)	O(4)-Te(1)-O(2)#1	172.0(2)	
C(37)-Sn(3)-C(25)	109.5(5)	O(3)-Te(1)-O(2)#1	89.1(2)	
O(3)-Sn(3)-C(31)	95.5(4)	O(2)-Te(1)-O(2)#1	79.2(2)	
C(37)-Sn(3)-C(31)	112.2(6)	O(1)-Te(1)-O(2)#1	92.1(2)	
C(25)-Sn(3)-C(31)	111.9(5)	O(4)-Te(1)-C(1)	96.8(3)	
C(8)-C(7)-Sn(2)	119.3(9)	O(3)-Te(1)-C(1)	92.5(3)	
C(12)-C(7)-Sn(2)	122.6(8)	O(2)-Te(1)-C(1)	170.3(3)	
C(18)-C(13)-Sn(2)	118.1(8)	O(1)-Te(1)-C(1)	91.3(3)	
C(14)-C(13)-Sn(2)	123.5(8)	O(2)#1-Te(1)-C(1)	91.2(3)	
C(24)-C(19)-Sn(2)	123.0(9)	O(4)-Te(1)-Te(1)#1	132.48(15)	
C(20)-C(19)-Sn(2)	119.2(9)	O(3)-Te(1)-Te(1)#1	88.7(2)	
C(26)-C(25)-Sn(3)	124.2(8)	O(2)-Te(1)-Te(1)#1	39.66(17)	
C(30)-C(25)-Sn(3)	116.7(9)	O(1)-Te(1)-Te(1)#1	89.82(19)	
C(32)-C(31)-Sn(3)	119.3(10)	O(2)#1-Te(1)-Te(1)#1	39.53(15)	
C(36)-C(31)-Sn(3)	121.5(11)	C(1)-Te(1)-Te(1)#1	130.7(3)	
C(42)-C(37)-Sn(3)	121.2(11)	Te(1)-O(2)-Te(1)#1	100.8(3)	
C(38)-C(37)-Sn(3)	116.9(12)	C(6)-C(1)-Te(1)	120.6(7)	
Te(1)-O(3)-Sn(3)	132.8(3)	C(2)-C(1)-Te(1)	118.7(8)	

Table S2. Selected bond lengths [Å] and angles [°] for complex 2.

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Complex 3			
Sn(1)-O(4)	2.023(10)	Te(1)-O(3)	1.893(10)
Sn(1)-C(11)	2.05(2)	Te(1)-O(4)	1.900(10)
Sn(1)-C(12)	2.077(18)	Te(1)-O(1)	1.927(11)
Sn(1)-C(10)	2.12(2)	Te(1)-O(2)	1.939(10)
Sn(2)-O(3)	1.996(11)	Te(1)-O(2)#1	1.968(9)
Sn(2)-C(7)	2.10(2)	Te(1)-C(1)	2.13(2)
Sn(2)-C(8)	2.10(2)	Te(1)-Te(1)#1	3.0053(14)
Sn(2)-C(9)	2.13(2)	Te(2)-O(8)	1.883(10)
Sn(3)-O(7)	1.980(11)	Te(2)-O(7)	1.906(10)
Sn(3)-C(21)	2.10(2)	Te(2)-O(5)	1.945(11)
Sn(3)-C(19)	2.11(2)	Te(2)-O(6)	1.962(10)
Sn(3)-C(20)	2.12(2)	Te(2)-O(6)#2	1.954(11)
Sn(4)-O(8)	2.004(11)	Te(2)-C(13)	2.12(2)
Sn(4)-C(22)	2.08(3)	Te(2)-Te(2)#2	3.0114(14)
Sn(4)-C(24)	2.13(3)	O(2)-Te(1)#1	1.968(9)
Sn(4)-C(23)	2.16(3)	O(6)-Te(2)#2	1.954(11)
O(4)-Sn(1)-C(11)	97.7(7)	O(2)-Te(1)-O(2)#1	79.4(4)
O(4)-Sn(1)-C(12)	107.0(7)	O(3)-Te(1)-C(1)	95.7(6)
C(11)-Sn(1)-C(12)	115.5(9)	O(4)-Te(1)-C(1)	91.8(6)
O(4)-Sn(1)-C(10)	110.5(7)	O(1)-Te(1)-C(1)	90.0(7)
C(11)-Sn(1)-C(10)	110.4(9)	O(2)-Te(1)-C(1)	171.2(6)
C(12)-Sn(1)-C(10)	114.3(9)	O(2)#1-Te(1)-C(1)	92.1(6)
O(3)-Sn(2)-C(7)	107.1(8)	O(3)-Te(1)-Te(1)#1	132.9(3)
O(3)-Sn(2)-C(8)	107.3(7)	O(4)-Te(1)-Te(1)#1	89.7(3)
C(7)-Sn(2)-C(8)	118.6(9)	O(1)-Te(1)-Te(1)#1	89.1(3)
O(3)-Sn(2)-C(9)	96.2(7)	O(2)-Te(1)-Te(1)#1	40.1(3)
C(7)-Sn(2)-C(9)	110.6(8)	O(2)#1-Te(1)-Te(1)#1	39.4(2)
C(8)-Sn(2)-C(9)	114.2(9)	C(1)-Te(1)-Te(1)#1	131.4(5)
O(7)-Sn(3)-C(21)	110.6(7)	O(8)-Te(2)-O(7)	88.9(5)
O(7)-Sn(3)-C(19)	106.6(7)	O(8)-Te(2)-O(5)	90.0(5)
C(21)-Sn(3)-C(19)	112.6(9)	O(7)-Te(2)-O(5)	178.1(5)
O(7)-Sn(3)-C(20)	98.6(7)	O(8)-Te(2)-O(6)	172.2(5)
C(21)-Sn(3)-C(20)	111.6(9)	O(7)-Te(2)-O(6)	90.6(4)
C(19)-Sn(3)-C(20)	115.8(9)	O(5)-Te(2)-O(6)	90.3(5)
O(8)-Sn(4)-C(22)	105.1(8)	O(8)-Te(2)-O(6)#2	92.7(5)
O(8)-Sn(4)-C(24)	96.4(8)	O(7)-Te(2)-O(6)#2	90.4(5)
C(22)-Sn(4)-C(24)	111.9(10)	O(5)-Te(2)-O(6)#2	88.1(5)
C(22)-Sn(4)-C(23)	120.3(10)	O(6)-Te(2)-O(6)#2	79.5(5)
C(24)-Sn(4)-C(23)	112.8(10)	O(8)-Te(2)-C(13)	95.8(6)
Te(1)-O(3)-Sn(2)	126.9(6)	O(7)-Te(2)-C(13)	93.1(6)
Te(1)-O(4)-Sn(1)	123.8(5)	O(5)-Te(2)-C(13)	88.6(6)
Te(2)-O(6)-Te(2)#2	100.5(5)	O(6)-Te(2)-C(13)	92.0(6)

Table S3. Selected bond lengths [Å] and angles [°] for complex 3.

Te(2)-O(7)-Sn(3)	126.4(6)	O(6)#2-Te(2)-C(13)	170.9(6)
Te(2)-O(8)-Sn(4)	123.9(6)	O(8)-Te(2)-Te(2)#2	132.6(3)
O(3)-Te(1)-O(4)	89.9(5)	O(7)-Te(2)-Te(2)#2	90.7(3)
O(3)-Te(1)-O(1)	90.1(5)	O(5)-Te(2)-Te(2)#2	89.0(3)
O(4)-Te(1)-O(1)	178.2(5)	O(6)-Te(2)-Te(2)#2	39.6(3)
O(3)-Te(1)-O(2)	92.9(4)	O(6)#2-Te(2)-Te(2)#2	39.9(3)
O(4)-Te(1)-O(2)	90.3(5)	C(13)-Te(2)-Te(2)#2	131.6(5)
O(1)-Te(1)-O(2)	87.9(5)	Te(1)-O(2)-Te(1)#1	100.6(5)
O(3)-Te(1)-O(2)#1	172.2(4)	C(6)-C(1)-Te(1)	120.8(17)
O(4)-Te(1)-O(2)#1	89.2(4)	C(2)-C(1)-Te(1)	117.7(14)
O(1)-Te(1)-O(2)#1	90.6(5)	O(8)-Sn(4)-C(23)	106.9(7)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1; #2 -x+1,-y+2,-z+1

Complex 4			
Te(1)-Sn(1)	3.4281(7)	Sn(1)-(O1)	2.009(4)
Te(1)-Sn(2)	3.5187(8)	Sn(1)-(C7)	2.136(8)
Te(1)-O(1)	1.889(5)	Sn(1)-(C13)	2.128(7)
Te(1)-O(2)	1.956(5)	Sn(1)-(C19)	2.129(8)
Te(1)-O(3)	1.966(4)	Sn(2)-(O4)	1.992(5)
Te(1)-O(4)	1.912(5)	Sn(2)-(C25)	2.135(9)
Te(1)-C(1)	2.103(7)	Sn(2)-(C31)	2.125(8)
Te(1)-Te(1)#1	3.0193(6)	Sn(2)-(C37)	2.128(8)
Te(1)-O(3)#1	1.961(4)		
Sn(1)-Te(1)-Sn(2)	93.33(2)	Te(1)#1-Te(1)-O(3)	39.70(11)
Sn(1)-Te(1)-O(1)	29.40(14)	O(3)-Te(1)-O(3)#1	79.51(17)
Sn(1)-Te(1)-O(2)	59.29(14)	O(4)-Te(1)-C(1)	91.4(3)
Sn(1)-Te(1)-O(3)	146.90(12)	Te(1)#1-Te(1)-O(4)	89.70(14)
Sn(1)-Te(1)-O(4)	118.71(14)	O(3)#1 -Te(1)-O(4)	89.8(2)
Te(1)#1-Te(1)-Sn(1)	118.36(2)	Te(1)#1-Te(1)-C(1)	130.5(2)
Sn(1)-Te(1)-O(3)#1	83.77(12)	O(3)#1-Te(1)-C(1)	170.2(3)
Sn(2)-Te(1)-O(1)	67.78(14)	Te(1)#1-Te(1)-O(3)#1	39.81(13)
Sn(2)-Te(1)-O(2)	151.19(14)	Te(1)-Sn(1)-O(1)	27.48(14)
Sn(2)-Te(1)-O(3)	111.33(13)	Te(1)-Sn(1)-C(7)	123.46(19)
Sn(2)-Te(1)-O(4)	26.25(14)	Te(1)-Sn(1)-C(13)	95.14(19)
Te(1)#1-Te(1)-Sn(2)	96.96(2)	Te(1)-Sn(1)-C(19)	103.8(2)
Sn(2)-Te(1)-O(3)#1	79.75(14)	O(1)-Sn(1)-C(7)	96.3(2)
O(1)-Te(1)-O(2)	87.3(2)	O(1)-Sn(1)-C(13)	111.9(2)
O(1)-Te(1)-O(3)	172.81(18)	O(1)-Sn(1)-C(19)	112.2(3)
O(1)-Te(1)-O(4)	91.1(2)	C(7)-Sn(1)-C(13)	111.5(3)
Te(1)#1-Te(1)-O(1)	133.15(15)	C(7)-Sn(1)-C(19)	107.1(3)
O(1)-Te(1)-O(3)#1	93.34(19)	C(13)-Sn(1)-C(19)	116.0(3)
O(2)-Te(1)-O(3)	91.55(19)	Te(1)-Sn(2)-O(4)	25.11(13)
O(2)-Te(1)-O(4)	177.1(2)	Te(1)-Sn(2)-C(25)	119.9(3)
Te(1)#1-Te(1)-O(2)	89.62(14)	Te(1)-Sn(2)-C(31)	95.0(2)
O(2)-Te(1)-O(3)#1	87.87(19)	Te(1)-Sn(2)-C(37)	103.0(2)
O(3)-Te(1)-O(4)	89.74(19)	O(4)-Sn(2)-C(25)	97.5(3)
C(25)-Sn(2)-C(31)	109.6(3)	O(4)-Sn(2)-C(31)	115.3(3)
C(25)-Sn(2)-C(37)	113.7(3)	O(4)-Sn(2)-C(37)	105.0(3)
C(31)-Sn(2)-C(37)	114.5(3)		

Table S4. Selected bond lengths $[{\rm \AA}]$ and angles $[^\circ]$ for complex 4.

Symmetry transformations used to generate equivalent atoms: #1 1-x,1-y,1-z

Complex 5			
Sn(1)-O(4)	2.006(6)	Te(1)-O(3)	1.881(6)
Sn(1)-C(2)	2.121(13)	Te(1)-O(4)	1.900(6)
Sn(1)-C(1)	2.128(12)	Te(1)-O(1)	1.948(6)
Sn(1)-C(3)	2.142(13)	Te(1)-O(2)#1	1.960(6)
Sn(2)-O(3)	2.007(6)	Te(1)-O(2)	1.962(6)
Sn(2)-C(14)	2.104(12)	Te(1)-C(8)	2.125(9)
Sn(2)-C(15)	2.137(11)	Te(1)-Te(1)#1	3.0189(12)
Sn(2)-C(10)	2.149(11)	O(2)-Te(1)#1	1.960(6)
O(4)-Sn(1)-C(2)	108.5(4)	O(1)-Te(1)-O(2)#1	90.1(3)
O(4)-Sn(1)-C(1)	110.4(4)	O(3)-Te(1)-O(2)	92.3(3)
C(2)-Sn(1)-C(1)	113.0(6)	O(4)-Te(1)-O(2)	91.3(3)
O(4)-Sn(1)-C(3)	94.6(4)	O(1)-Te(1)-O(2)	88.2(3)
C(2)-Sn(1)-C(3)	115.6(6)	O(2)#1-Te(1)-O(2)	79.3(3)
C(1)-Sn(1)-C(3)	113.1(6)	O(3)-Te(1)-C(8)	97.0(3)
O(3)-Sn(2)-C(14)	105.6(4)	O(4)-Te(1)-C(8)	92.7(3)
O(3)-Sn(2)-C(15)	96.9(4)	O(1)-Te(1)-C(8)	87.7(3)
C(14)-Sn(2)-C(15)	116.5(6)	O(2)#1-Te(1)-C(8)	91.3(3)
O(3)-Sn(2)-C(10)	109.3(4)	O(2)-Te(1)-C(8)	169.8(3)
C(14)-Sn(2)-C(10)	113.8(5)	O(3)-Te(1)-Te(1)#1	131.9(2)
C(15)-Sn(2)-C(10)	112.8(5)	O(4)-Te(1)-Te(1)#1	90.6 (2)
Te(1)-O(3)-Sn(2)	126.7(3)	O(1)-Te(1)-Te(1)#1	88.94(19)
Te(1)-O(4)-Sn(1)	127.6(3)	O(2)#1-Te(1)-Te(1)#1	39.70(16)
O(3)-Te(1)-O(4)	90.4(3)	O(2)-Te(1)-Te(1)#1	39.63(18)
O(3)-Te(1)-O(1)	89.9(3)	C(8)-Te(1)-Te(1)#1	130.9(3)
O(4)-Te(1)-O(1)	179.5(3)	Te(1)#1-O(2)-Te(1)	100.7(3)
O(3)-Te(1)-O(2)#1	171.6(3)	C(9)-C(8)-Te(1)	120.5(7)
O(4)-Te(1)-O(2)#1	89.6(3)	C(12)-C(8)-Te(1)	119.3(7)

Table S5. Selected bond lengths $[{\rm \AA}]$ and angles $[^\circ]$ for complex 5.

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z

Complex 6			
Sn(1)-O(3)	2.004(6)	Sn(4)-C(79)	2.136(12)
Sn(1)-C(31)	2.104(12)	Te(1)-O(3)	1.888(6)
Sn(1)-C(37)	2.112(11)	Te(1)-O(4)	1.903(6)
Sn(1)-C(25)	2.127(10)	Te(1)-O(1)	1.958(6)
Sn(2)-O(4)	1.992(6)	Te(1)-O(5)	1.967(6)
Sn(2)-C(19)	2.115(11)	Te(1)-O(6)	1.971(6)
Sn(2)-C(7)	2.103(11)	Te(1)-C(1)	2.124(10)
Sn(2)-C(13)	2.132(11)	Te(1)-Te(2)	3.024(9)
Sn(3)-O(8)	1.988(6)	Te(2)-O(7)	1.882(5)
Sn(3)-C(49)	2.083(10)	Te(2)-O(8)	1.891(6)
Sn(3)-C(61)	2.116(12)	Te(2)-O(2)	1.940(6)
Sn(3)-C(55)	2.152(12)	Te(2)-O(6)	1.961(6)
Sn(4)-O(7)	2.022(6)	Te(2)-O(5)	1.968(6)
Sn(4)-C(67)	2.098(11)	Te(2)-C(43)	2.125(9)
Sn(4)-C(73)	2.100(12)		
O(3)-Sn(1)-C(31)	111.0(4)	O(3)-Te(1)-O(4)	91.3(2)
O(3)-Sn(1)-C(37)	113.6(3)	O(3)-Te(1)-O(1)	87.7(2)
C(31)-Sn(1)-C(37)	112.1(5)	O(4)-Te(1)-O(1)	177.2(3)
O(3)-Sn(1)-C(25)	99.2(3)	O(3)-Te(1)-O(5)	92.9(2)
C(31)-Sn(1)-C(25)	110.3(4)	O(4)-Te(1)-O(5)	88.3(2)
C(37)-Sn(1)-C(25)	109.8(4)	O(1)-Te(1)-O(5)	89.2(2)
O(4)-Sn(2)-C(19)	95.4(3)	O(3)-Te(1)-O(6)	172.0(2)
O(4)-Sn(2)-C(7)	109.5(4)	O(4)-Te(1)-O(6)	89.4(2)
C(19)-Sn(2)-C(7)	113.0(4)	O(1)-Te(1)-O(6)	91.2(2)
O(4)-Sn(2)-C(13)	111.3(4)	O(5)-Te(1)-O(6)	79.2(2)
C(19)-Sn(2)-C(13)	111.8(4)	O(3)-Te(1)-C(1)	96.8(3)
C(7)-Sn(2)-C(13)	114.3(4)	O(4)-Te(1)-C(1)	92.5(3)
O(8)-Sn(3)-C(49)	106.9(4)	O(1)-Te(1)-C(1)	90.2(3)
O(8)-Sn(3)-C(61)	113.2(4)	O(5)-Te(1)-C(1)	170.3(3)
C(49)-Sn(3)-C(61)	113.8(5)	O(6)-Te(1)-C(1)	91.1(3)
O(8)-Sn(3)-C(55)	94.3(4)	O(3)-Te(1)-Te(2)	132.56(17)
C(49)-Sn(3)-C(55)	116.9(5)	O(4)-Te(1)-Te(2)	87.91(16)
C(61)-Sn(3)-C(55)	110.2(5)	O(1)-Te(1)-Te(2)	90.88(17)
O(7)-Sn(4)-C(67)	110.4(4)	O(5)-Te(1)-Te(2)	39.71(15)
O(7)-Sn(4)-C(73)	96.9(4)	O(6)-Te(1)-Te(2)	39.46(15)
C(67)-Sn(4)-C(73)	107.9(5)	C(1)-Te(1)-Te(2)	130.6(3)
O(7)-Sn(4)-C(79)	111.5(4)	O(7)-Te(2)-O(8)	92.0(2)
C(67)-Sn(4)-C(79)	117.2(5)	O(7)-Te(2)-O(2)	88.2(2)
C(73)-Sn(4)-C(79)	110.9(5)	O(8)-Te(2)-O(2)	179.3(3)
Te(2)-O(7)-Sn(4)	122.4(3)	O(7)-Te(2)-O(6)	93.7(2)
Te(2)-O(8)-Sn(3)	132.8(3)	O(8)-Te(2)-O(6)	90.4(2)
C(8)-C(7)-Sn(2)	121.9 (8)	O(2)-Te(2)-O(6)	88.9(2)

Table S6. Selected bond lengths [Å] and angles [°] for complex 6.

C(12)-C(7)-Sn(2)	120.1(8)	O(7)-Te(2)-O(5)	173.2(2)
C(14)-C(13)-Sn(2)	123.8(9)	O(8)-Te(2)-O(5)	89.1(3)
C(18)-C(13)-Sn(2)	116.2(9)	O(2)-Te(2)-O(5)	90.6(3)
C(24)-C(19)-Sn(2)	121.3(9)	O(6)-Te(2)-O(5)	79.6(2)
C(20)-C(19)-Sn(2)	122.4(9)	O(7)-Te(2)-C(43)	96.2(3)
C(30)-C(25)-Sn(1)	120.9(8)	O(8)-Te(2)-C(43)	91.1(3)
C(26)-C(25)-Sn(1)	120.7(8)	O(2)-Te(2)-C(43)	89.6(3)
C(36)-C(31)-Sn(1)	121.7(10)	O(6)-Te(2)-C(43)	169.9(3)
C(32)-C(31)-Sn(1)	119.7(10)	O(5)-Te(2)-C(43)	90.5(3)
C(42)-C(37)-Sn(1)	118.4(9)	O(7)-Te(2)-Te(1)	133.47(17)
C(38)-C(37)-Sn(1)	127.9(9)	O(8)-Te(2)-Te(1)	90.3(2)
C(50)-C(49)-Sn(3)	124.5(9)	O(2)-Te(2)-Te(1)	89.04(18)
C(54)-C(49)-Sn(3)	124.3(9)	O(6)-Te(2)-Te(1)	39.83(14)
C(56)-C(55)-Sn(3)	122.5(10)	O(5)-Te(2)-Te(1)	39.75(16)
C(60)-C(55)-Sn(3)	120.8(9)	C(43)-Te(2)-Te(1)	130.2(3)
C(72)-C(67)-Sn(4)	119.2(9)	Te(1)-O(3)-Sn(1)	125.4(3)
C(68)-C(67)-Sn(4)	125.2(9)	Te(1)-O(4)-Sn(2)	130.9(3)
C(78)-C(73)-Sn(4)	124.0(10)	Te(2)-O(5)-Te(1)	100.5(2)
C(74)-C(73)-Sn(4)	121.5(10)	Te(2)-O(6)-Te(1)	100.7(2)
C(66)-C(61)-Sn(3)	118.6(10)	C(6)-C(1)-Te(1)	120.4(8)
C(62)-C(61)-Sn(3)	124.1(10)	C(2)-C(1)-Te(1)	116.2(8)
C(84)-C(79)-Sn(4)	122.0(10)	C(48)-C(43)-Te(2)	120.0(7)
C(80)-C(79)-Sn(4)	119.5(10)	C(44)-C(43)-Te(2)	119.1(7)

Fig. S1. Molecular structure of complex 1.

Fig. S2. Molecular structure of complex 2.

Fig. S3. Molecular structure of complex **3**.

Fig. S4. Molecular structure of complex 4.

Fig. S5. Molecular structure of complex 5.

Fig. S6. Molecular structure of complex 6.

Supramolecular structures of complexes 1-6

Fig. S7. 1D polymeric chain of complex 1 made up of intermolecular C-H…F interactions.

Fig. S8. 2D network structures of complex 2 made up of intermolecular C-H…F interactions.

Fig. S9. 1D chain structures of complex **3** made up of intermolecular C-H…F interactions.

Fig. S10. 2D network structures of complex 4 made up of intermolecular C-H…F interactions.

Fig. S11. 1D polymeric chain of complex 5 made up of intermolecular C-H…O interactions.

Fig. S12. 1D infinite zigzag chain of complex 6 made up of intermolecular C-H…F interactions.

Fig. S13. ¹¹⁹Sn NMR spectra of complexes 1

Fig. S14. ¹¹⁹Sn NMR spectra of complexes 2

Fig. S15. ¹¹⁹Sn NMR spectra of complexes **3**

Fig. S16. ¹¹⁹Sn NMR spectra of complexes 4

Fig. S18. ¹¹⁹Sn NMR spectra of complexes 6