Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information (ESI)

Tuning water oxidation reactivity by employing surfactant directed synthesis of porous ${\rm Co}_3{\rm O}_4$ nanomaterials

Priyajit Jash, Aravind V and Amit Paul*

Department of Chemistry Indian Institute of Science Education and Research (IISER) Bhopal, MP 462066 (India) Email: <u>apaul@iiserb.ac.in</u>

Page no.	Contents
S2	FTIR spectra and Cumulative pore volume for all Co ₃ O ₄ nanomaterials
S3	EDS mapping and % of atomic weight for all Co ₃ O ₄ nanomaterials
S4-S5	Literature reports of recently studied cobalt oxide water oxidation electrocatalysts
S6-S7	Areal capacitance, ECSA and RF determination methodology and Equivalent
	circuit model for AC Impedance
S7	Potential dependent EIS for all Co ₃ O ₄ nanomaterials
S8	Equivalent circuit fitted parameters and O ₂ quantification
S9	24 hour Chronoamperometry and post catalysis XPS, TEM and EDS, References

Figure S1: FTIR spectra of Co₃O₄ nanomaterials.

Figure S2: Cumulative pore volume *versus* pore size of Co₃O₄ nanomaterials.

Figure S3: EDS mapping of (a) Co_3O_4 -F127 (b) Co_3O_4 -OTAB and (c) Co_3O_4 -WS. Inset tables show the estimated atomic weight per cent of the composition. EDS analyses were performed on carbon coated Cu grid.

Catalyst	Overpotential (η) (mV) @ 10 mA/ cm ²	TOF (s ⁻¹)	Tafel Slope (mV dec ⁻¹)	Mass activity @η=350 (j/m; A/g)	рН	Reference	
Mesoporous Co ₃ O ₄ nanosheet	360	2.86× 10 ⁻¹ @350 mV	90	123.1	14	This work	
Hollow Co ₃ O ₄	400	2.6 × 10 ⁻³ @400 mV	70	-	13	<i>Nanoscale</i> 2014, 6 , 7255	
Co ₃ O ₄ nanoparticle (~ 6 nm)	328	1.87× 10 ⁻² @328 mV	47±7	-	14	J. Phys. Chem. C 2009, 113 , 15068	
Mesoporous Co ₃ O ₄	476	4.55 × 10 ⁻³ @400 mV	53	-	13	<i>Nano Res.</i> 2013, 6 , 47	
Mesoporous Co ₃ O ₄	427	-	-	-	14	<i>Chem. Mater.</i> 2013, 25 , 4926	
Mesoporous Co ₃ O ₄ nanoflakes	380	-	48	-	14	ACS Appl. Mater. Interfaces 2015, 7, 3306	
Porous Co ₃ O ₄ nanoplates	523	2.81× 10 ⁻³ @400 mV	71	-	14	J. Mater. Chem. A 2015, 3 , 8107	
Co ₃ O ₄ nanorods/MCNT	309	5.3× 10 ⁻² @300 mV	51	-	14	J. Mater. Chem. A 2015, 3 , 1761	
ZnCo ₂ O ₄ /N-CNT	420	-	70.6	-	14	<i>Adv. Mater.</i> 2016, 28 , 3777	
ZnCo ₂ O ₄ /Au/CNT	440	440 11.86 @500 mV		-	14	J. Power Sources 2017, 357 ,1	
NiCo ₂ P _x /CNT	284	5.5×10 ⁻¹ @300 mV	50.3	-	14	J. Mater. Chem. A 2018, 6 , 7420	
NiCo ₂ S ₄ nanorod	220@30 mA/ cm ²	-	113.8	-	14	<i>J. Power</i> <i>Sources</i> 2018, 402 ,116	
S,N-CNT/ CoS2@Co	340	-	76.1	-	14	<i>Science Bull.</i> 2018, 63 , 1130	
CoOOH nanosheets	300	9× 10 ⁻² @300 mV	38	66.6 @300 mV	14	Angew. Chem., Int. Ed. 2015, 54 , 8722	
CoMn LDH nanosheets	324	0.9× 10 ⁻² @300 mV	43	18.8 @300 mV	14	J. Am. Chem. Soc. 2014, 136, 16481	

 Table S1: Literature reports of recently studied cobalt oxide based water oxidation

 electrocatalysts.

CoCo LDH nanosheets	353	3× 10 ⁻³ @300 mV	45	-	14	Nat. Commun. 2014 5 4477
FeCoMo	460	5.89× 10 ⁻ 2@350 mV	29	46.8	14	2014, 3, 4477 New J. Chem. 2018, 42 , 7254
α Co(OH) ₂ nanomesh	303	-	69	31.3@303 mV	14	<i>Chem.</i> <i>Commun.</i> 2018, 54 , 4045
α Co(OH) ₂ nanosheet	317	-	49	2.9@303 mV	14	<i>Chem.</i> <i>Commun.</i> 2018, 54, 4045
CoOP Hollow nanocage	380	1.62× 10 ⁻² @350 mV	67	41.7	14	<i>Chem. Eur. J.</i> 2017, 23 , 12519

Calculation of areal capacitance (C_{DL} , μ F/cm²), electrochemically accessible surface area (ECSA) and roughness factor (RF)

The charging current for cathodic (i_c) and anodic (i_a) currents were taken at 0 V versus Ag/AgCl. The relation between i_c/i_a versus scan rate (v) and the double layer capacitance (C) were given by equations S1 (a-b).

$$i_a = \nu C$$
 (S1a)
 $i_c = \nu C$ (S1b)

The slopes of i_c and i_a as a function of v provided C from the slope. The average slope calculated from cathodic and anodic currents was taken as C. The geometrical area of the electrode (GSA) was 0.07 cm². The areal capacitances (C_{dl} , μ F/cm²) were calculated by dividing C with GSA

For the calculation of electrochemically accessible surface area (ECSA), equation S2 has been used wherein $C_s=27 \,\mu\text{F/cm}^2$ (specific surface area) taken from the literature.¹

ECSA = $C/C_{\rm S}$ (S2)

Roughness factor (RF) was estimated using equation S3.

Roughness Factor (RF) = ECSA/GSA (S3)

Table S2: Non-faradic capacitances (C_{dl}), electrochemically accessible surface areas (ECSA), and roughness factors (RF) of Co₃O₄ nanomaterials.

Sample	Capacitance C _{dl} (µFcm ⁻²)	ECSA (cm²)	Roughness Factor (RF)
Co ₃ O ₄ -F127	42.8	1.58	22.6
C0 ₃ O ₄ -OTAB	19.3	0.71	10.1
Co ₃ O ₄ -WS	8.80	0.32	4.6

Figure S4: Equivalent circuit model used for fitting of OER catalysis results by Co_3O_4 nanomaterials. R_s , C_{dl} , R_{ct} , R_p , and CPE represent uncompensated solution resistance, double layer charging at the electrode/electrolyte interface at high frequency domain, charge transfer resistance at the electrode/electrolyte interface related to the overall OER, pseudoresistance

which is related with one or more surface intermediates formation, and pseudocapacitance which represents change in charged surface species as OER proceeds respectively.

Figure S5: Potential dependent EIS results for OER by Co_3O_4 nanomaterials. Nyquist plots for (a) Co_3O_4 -F127 (c) Co_3O_4 -OTAB and (e) Co_3O_4 -WS respectively (inset shows the high frequency region). Bode plots for (b) Co_3O_4 -F127 (d) Co_3O_4 -OTAB and (f) Co_3O_4 -WS. The experimental results were represented by discrete points, while simulated impedance results were represented by continues lines.

Co ₃ O ₄ -WS						C03O4-OTAB						
E/V (vs. RHE)	R _S (Ω)	R _{Ct} Ω	C _{dl} (µ F)	R _P (Ω)	Q (Fs ^(a-1))	Exp (a)	R _S (Ω)	R _{Ct} Ω	C _{dl} (µ F)	R _P (Ω)	Q (Fs ^(a-1))	Exp (a)
1.47 1.52 1.56 1.58 1.60	15.9 15.9 15.8 15.9 15.8	17 15 13 11 10	0.9 1.1 1.2 1.3 1.3	0 84100 11000 4307 1564	0.00021 0.00012 0.00011 0.00010 0.00010	0.87 0.87 0.90 0.87 0.84	11.0 10.8 10.9 11.1 11.0	15 9.2 9 7.5 6.8	1.7 1.6 1.6 1.3 1.6	0 18800 3389 821.4 799.8	0.0010 0.00061 0.00050 0.00049 0.00029	0.89 0.89 0.90 0.91 0.82
C03O4-F127												
E/V (vs. RHE)		R _S (Ω)		R _{Ct} (Ω)	C _{dl} (µ F))	R _p (Ω)	•	(Q (Fs ^(a-1))	Exp (a)	
1.47 1.52 1.56 1.58 1.60		13 10.5 10.3 10.3		13.7 7.4 6.2 5.2 3.8	0.7 0.8 4.2 3.3 2.4		14 21 19 43 42	300 62 5.3 .6	() () ()).00012).00014).00037).00043	0.86 0.85 0.84 0.84 0.79	

Table S3: Equivalent circuit parameters calculated from EIS fitting for Co₃O₄ nanomaterials at different potentials.

Figure S6: Theoretical (red line) and experimental (dark cyan triangle) quantification of O_2 evolution with Co_3O_4 -F127 catalyst at 1.62 V (vs. RHE) in 1 M NaOH during chronoamperometry

Figure S7: Chronoamperogram showing the stability up to 24 h at a constant potential of 1.58 V (*vs.* RHE) in 1 M NaOH during water oxidation

Figure S8: (a) & (b) XPS spectra of Co and O respectively of Co_3O_4 -F127 after long term chronoamperometry experiment on ITO glass substrate at 1.58 V (*versus* RHE) in 1 M NaOH solution. (c) TEM image of Co_3O_4 -F127 after long term chronoamperometry experiment on ITO coated glass substrate at 1.58 V (*versus* RHE) in 1 M NaOH solution (pores shown by red arrows). (d) Corresponding EDS analysis.

References:

1. C. C. L. McCrory, S. H. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977-16987.