Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

New dithienosilole and dithienogermole based BODIPY for solar cell applications

Thumuganti Gayathri,^{a,c} Vinay Gupta,^{*b,c} and Surya Prakash Singh^{*a,c}

^a Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad, 500007, India

^bCSIR-National Physical Laboratory, New Delhi-110012, India

^c Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India

Contents Page No).
1. Differential Pulse Voltametry (DPV) StudiesS	2
Figure S1 DPV oxidation potential curves of Si-BDP and Ge-BDP dyes in CH ₂ Cl ₂	
2. DFT calculations	3
Figure S2 Distribution of frontier molecular orbitals (HOMO and LUMO) of Si-BDP	
Table S1: Major allowed transitions for the dye Si-BDP calculated by B3LYP/6-311g (d,j	p)
level of theory in DCMS	\$3
Table S2: Major allowed transitions for the dye Ge-BDP calculated by B3LYP/6-311g (d,	p)
level of theory in DCMS	3
3. NMR spectra	6
¹ H NMR Spectrum of EHT-BDP in CDCl ₃ S	\$4
¹³ C NMR Spectrum of EHT-BDP in CDCl ₃ S	34
¹ H NMR Spectrum of Si-BDP in CDCl ₃ S	5
¹³ C NMR Spectrum of Si-BDP in CDCl ₃ S	5
¹ H NMR Spectrum of Ge-BDP in CDCl ₃ S	6
¹³ C NMR Spectrum of Ge-BDP in CDCl ₃ S	\$6
4. Mass spectraS	7

1. Differential Pulse Voltametry (DPV) Studies

Figure S1 DPV oxidation potential curves of Si-BDP and Ge-BDP dyes in CH₂Cl₂ solution

2. DFT calculations:

Figure S2 Distribution of frontier molecular orbitals (HOMO and LUMO) of Si-BDP

Table S1:	Major	allowed	transitions	for the	dye Si-BDP	calculated	by B3L	YP/6-311	g (d,p)
level of the	eory in	DCM so	lvent.						

Excited state	Wavelength (nm)	Osc. strength	Major contributions
\mathbf{S}_1	667.18	0.2404	H-2->LUMO (79%), HOMO->LUMO (18%)
S_2	665.78	0.0864	H-2->L+1 (64%), HOMO->L+1 (29%)
S ₃	661.98	0.229	H-2->L+1 (25%), H-1->LUMO (56%), HOMO->L+1 (18%)
S_4	661.06	1.4855	H-2->LUMO (13%), H-1->L+1 (50%), HOMO->LUMO (37%)
S_5	653.33	0.0027	H-1->L+1 (49%), HOMO->LUMO (45%)
S_6	653.16	0.0027	H-1->LUMO (38%), HOMO->L+1 (53%)
S_7	488.81	1.2195	H-2->L+2 (23%), HOMO->L+2 (65%)
S_8	487.22	0.0003	H-1->L+2 (98%)
S ₉	485.10	1.5445	H-4->LUMO (13%), H-3->L+1 (13%), H-2->L+2 (38%), HOMO->L+2 (33%)
\mathbf{S}_{10}	468.94	0.0069	H-4->L+1 (39%), H-3->LUMO (41%), H-1->L+4 (10%), HOMO->L+3 (10%)

Table S2: Major	allowed transitions	for the dye Ge-BDP	calculated by	B3LYP/6-311g (d,p
level of theory in	DCM solvent.			

Excited state	Wavelength (nm)	Osc. strength	Major contributions
S ₁	672.72	0.1083	H-2->LUMO (90%)
S_2	670.97	0.0133	H-2->L+1 (88%), HOMO->L+1 (10%)
S_3	662.55	0.2916	H-1->LUMO (59%), HOMO->L+1 (36%)
S_4	661.35	1.6273	H-1->L+1 (49%), HOMO->LUMO (48%)
S_5	653.43	0.0023	H-1->L+1 (52%), HOMO->LUMO (45%)
S_6	653.36	0.0018	H-1->LUMO (41%), HOMO->L+1 (55%)
S_7	486.72	2.2472	H-4->LUMO (13%), H-3->L+1 (13%), H-2->L+2 (44%), HOMO->L+2 (29%)
S_8	483.57	0.0003	H-1->L+2 (98%)
S ₉	482.80	0.5367	H-2->L+2 (15%), HOMO->L+2 (70%)
\mathbf{S}_{10}	468.90	0.0054	H-4->L+1 (39%), H-3->LUMO (41%), H-1->L+4 (10%), HOMO->L+3 (10%)

3. NMR spectra

¹³ C NMR Spectrum of EHT-BDP in CDCl₃

¹ H NMR Spectrum of Si-BDP in CDCl₃

¹³ C NMR Spectrum of SI-BDP in CDCl₃

¹ H NMR Spectrum of Ge-BDP in CDCl₃

¹³ C NMR Spectrum of Ge-BDP in CDCl₃

4. Mass Spectra

