Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Tunable Photophysical Properties of Thiophene Based Chromophores: Conjoined Experimental and Theoretical Investigation

Anna Popczyk^{a,b*}, Yohan Cheret^b, Anna Grabarz^a, Piotr Hanczyc^c, Piotr Fita^c, Abdelkrim El-Ghayoury^{b*}, Lech Sznitko^a, Jaroslaw Mysliwiec^a, Bouchta Sahraoui^b

^aFaculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-320, Wroclaw, Poland

^bLaboratoire MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers 2 bd Lavoisier, 49045 Angers Cedex, France

^cInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

Table of content

5-(benzothiophen-2-yl)thiophene-2-carbaldehyde: reaction path and ¹ H NMR	3
Phosphonates: reaction scheme, chemical structure, reactants ratio & yield	5
Phosphonates NMR Spectra	6
2-(bromomethyl)benzonitrile	6
3-(bromomethyl)benzonitrile	7
4-(bromomethyl)benzonitrile	8
1-(bromomethyl)-2-nitrobenzene	9
1-(bromomethyl)-3-nitrobenzene	0
1-(bromomethyl)-4-nitrobenzene	1
Thiophene derivatives: synthesis route and reaction yield	2
Thiophene derivatives ¹ H and ¹³ C NMR	3
1a1	3
1b14	4
1c	5
2a1	6

2b17
2c
High-resolution mass spectrometry19
1a19
1b19
1c
2a
2b21
2c
Examined conformers
Optimized geometries
1a24
1b25
1c26
2a27
2b
2c

5-(benzothiophen-2-yl)thiophene-2-carbaldehyde: reaction path and ¹H NMR

Scheme S1. Synthesis route for 5-(benzothiophen-2-yl)thiophene-2-carbaldehyde

Under argon, in a Schlenk flask 1 eq of benzothiophene (500 mg, 3.73 mmol) was dissolved in 20 mL of dry THF. The reaction mixture was cooled to -78°C and 1.1eq of lithium diisopropylamide (LDA) (439 mg, 4.1 mmol) was added dropwise. The mixture was stirred 1h at -78°C. Afterwards 1.9eq of trimethyltinchloride (1.41 g, 7.08 mmol) was added dropwise. The mixture was stirred at -78°C for 1h and then at room temperature overnight. After that, 20 mL of NaF saturated aqueous solution was added and the reaction mixture was stirred for 1h. Followed by extraction using 100 mL of ethyl acetate, solution was washed 3 times by distilled water (3x100 mL), then dried over MgSO4 and filtrated. Solvents were evaporated to obtain a yellow oil. Then under argon 1eq of benzo[b]thiophen-2-yltrimethylstannane (1.11 g, 3.73 mmol) was dissolved in 20 mL of dry toluene followed by the addition of 1eq of 5-bromothiophene-2-carbaldehyde (712 mg, 3.73 mmol) and 0.08eq of Pd(PPh₃)₄ (345 mg, 0.29 mmol). Reaction mixture was refluxed for 48hrs. Solvent was evaporated. Then reaction was purified by column chromatography on silica gel using 3:1 pentane/CH₂Cl₂ as eluent. Product was obtained as a yellow powder with 70% yield (638 mg)^{1,2}.

¹ M. Iyoda, J. Solid State Chem., 2002, **168**, 597–607.

² A. Miyazaki, K. Enomoto, K. Okabe, H. Yamazaki, J. Nishijo, T. Enoki, E. Ogura, K. Ugawa, Y. Kuwatani and M. Iyoda, *J. Solid State Chem.*, 2002, **168**, 547–562.

¹H NMR (CDCl₃, 300 MHz) δ/ppm: 9.90(s, 1H), 7.81(d, 1H, J= 4.8Hz), 7.78(d, 1H, J= 4.8 Hz), 7.71(d, 1H, J= 4.0Hz), 7.60(s, 1H), 7.38(m, 2H), 7.36(d, 1H, J= 4.0Hz)

Phosphonates: reaction scheme, chemical structure, reactants ratio & yield

Scheme S2. Synthetic route for phosphonates

All of the used phosphonates were synthesized in the same way. The reaction scheme and specific proportions of reactants can be find in SI (Scheme S2 and Table S2). Under argon, in the flask with distillation column a benzyl bromide derivative (1 eq) was mixed with four equivalents of triethyl phosphate and stirred for 1 hour in the temperature of 160°C. During the reaction ethyl bromide might be produced as a side product. Afterwards mixture was cooled down to the room temperature and dried (~5mbar, 60°C). At this point product should look like yellow oil. The mixture was dissolved in ethyl acetate (100 mL) and washed 6 times with saturated NaHCO₃ (6x30 mL). The organic phase was dried with MgSO₄ and then on rotatory evaporator (~5mbar, 60°C). Obtained yellow oil was additionally washed with petroleum ether (5x20 mL) and dried once again (~5 mbar, 60°C). The structure of the compounds was confirmed by ¹H and ³¹P NMR spectroscopy³.

Compound	R 1	R ₂	R3
1	CN	Н	Н
2	Н	CN	Н
3	Н	Н	CN
4	NO ₂	Н	Н
5	Н	NO ₂	Н
6	Н	Н	NO ₂

Table S1. The chemical structure of synthesized compounds

Table 52.	Reaction	yield o	i pnospn	onates syr	itnesis

Compound			Triethyl phosphate	Yie	eld
eq	1		4	%	g
1	2-(bromomethyl)benzonitrile	3g	10.50 ml	81	3.14
2	3-(bromomethyl)benzonitrile	3g	10,50 ml	78	3.02
3	4-(bromomethyl)benzonitrile	3g	10.50 ml	80	3.10
4	1-(bromomethyl)-2-nitrobenzene	3g	9.60 ml	79	3.00
5	1-(bromomethyl)-3-nitrobenzene	3g	9.60 ml	69	2.62
6	1-(bromomethyl)-4-nitrobenzene	3g	9.60 ml	74	2.81

³ A. Szukalski, K. Parafiniuk, K. Haupa, W. Goldeman, B. Sahraoui, F. Kajzar and J. Mysliwiec, *Dyes Pigments*, 2017, **142**, 507–515.

Phosphonates NMR Spectra

2-(bromomethyl)benzonitrile

140 110 80 60 40 20 0 -10 -40 -70 -100 -140 -180 -220 f1 (ppm)

3-(bromomethyl)benzonitrile

4-(bromomethyl)benzonitrile

S10

Thiophene derivatives: synthesis route and reaction yield

Scheme 3. Synthetic route for novel push-pull thiophene derivatives.

Table 4.	The	chemical	structure of	f obtained	ThDs.
----------	-----	----------	--------------	------------	-------

Compound	R ₁	R ₂	R 3	Yield [%]	Yield [mg]
1 a	NO ₂	Н	Н	79	118
1b	Н	NO ₂	Н	65	97
1c	Н	Н	NO ₂	68	101
2a	CN	Н	Н	84	118
2b	Н	CN	Н	77	109
2c	Н	Н	CN	69	97

Thiophene derivatives ¹H and ¹³C NMR

<u>1a</u>

 $^{1}\mathrm{H}$

High-resolution mass spectrometry

<u>1a</u>

<u>1b</u>

 RT : 5.06 min
 Scan# : (267,313)

 Elements : C 24/0, H 49/0, N 1/0, O 2/0, S 2/0

 Mass Tolerance

 : 1000ppm, 1mmu if m/z > 1

 Unsaturation (U.S.) : =0.5 = 20.0

<u>2a</u>

S20

<u>2c</u>

RT : 3.82 min Scan # : (330,387) Elements : C 24/0, H 49/0, N.1/0, S 2/0 Mass Tolerance : 1000ppm, 1mmu if m/z > 1 Unsaturation (U.S.) : =0.5 = 20,0

Examined conformers

Optimized geometries

All geometries included below were optimized with M06-2X/6-31G(d) method, using LR-PCM approach to take into account chloroform solution^{1,2}. The coordinates are given in Å units.

<u>1a</u>

Total energy + *ZPE* = -1770.682325

6	-4.7253471558	1.8773171446	0.4839859602
6	-4.5493463259	0.5159872067	0.1861047005
6	-5.7167419710	-0.1881681338	-0.1562641855
6	-6.9741171906	0.4049094613	-0.2092985795
6	-7.1006529288	1.7588783149	0.0630423756
6	-5.9670615142	2.4934774317	0.4090316648
6	-3.2186907814	-0.0963999397	0.3100491764
6	-2.0796693051	0.5787935142	0.0822105465
6	-0.7483024512	0.0172199152	0.2464594184
16	0.6379839724	0.9589579468	-0.2162565404
6	1.7338360310	-0.3014746385	0.2519003384
6	1.0445368522	-1.3902116695	0.7312745717
6	-0.3599586489	-1.2097264704	0.7301518959
6	3.1689232914	-0.1324628296	0.1180105952
6	3.8619409030	1.0022993631	-0.1747254652
6	5.2841746506	0.8033885054	-0.2264085354
6	5.6393813990	-0.5346059436	0.0435342256
16	4.2273398792	-1.5189794082	0.3424009980
6	6.9711169147	-0.9541680043	0.0509459664
6	7.9553998742	-0.0146373995	-0.2168731630
6	7.6213540220	1.3234283176	-0.4872300206
6	6.3005862856	1.7362539739	-0.4931043896
7	-5.6659095277	-1.6107633660	-0.5163122633
8	-6.6806136667	-2.2690403787	-0.3617090829
8	-4.6254728250	-2.0583077714	-0.9689408904
1	7.2283766697	-1.9875038529	0.2602331942
1	8.9971578795	-0.3185746676	-0.2171762662
1	8.4103557289	2.0394250306	-0.6932871480
1	6.0420018943	2.7702473675	-0.7011454504
1	-1.0597840346	-1.9586451908	1.0819310578
1	1.5351097291	-2.2899297065	1.0869677874
1	3.3885758047	1.9646279728	-0.3410047074
1	-2.1287051124	1.6062074943	-0.2734120557
1	-3.1743728375	-1.1424843272	0.5922425207
1	-3.8642771198	2.4494302677	0.8125300783
1	-6.0534845101	3.5497454120	0.6418558296
1	-8.0742060270	2.2331347539	0.0122635273
1	-7.8300432487	-0.2017970748	-0.4777066198

<u>1b</u>

Total energy + *ZPE* = -1770.687995

6	-4.4980280081	1.7764532207	-0.0546727536
6	-4.2405048869	0.3955081364	-0.0022623083
6	-5.3332693289	-0.4780990391	0.0233107158
6	-6.6196835172	0.0394015773	-0.0058159180
6	-6.8852974454	1.4000055963	-0.0593967125
6	-5.7969851299	2.2683850245	-0.0833195924
6	-2.8898060473	-0.1755481934	0.0279613433
6	-1.7388397823	0.5167134293	-0.0135645962
6	-0.4161640594	-0.0852989183	0.0216366418
6	-0.0414065801	-1.4051720061	0.1167015966
6	1.3627262857	-1.5879557498	0.1232043830
6	2.0663181646	-0.4099718963	0.0340217290
16	0.9842853143	0.9417658055	-0.0675846108
6	3.5045115046	-0.2175633900	0.0209523685
6	4.1997918144	0.9496292409	0.1101205421
6	5.6245146421	0.7683965791	0.0667455835
6	5.9793791716	-0.5910442624	-0.0566429157
16	4.5642119662	-1.6132730576	-0.1275097036
6	7.3133149532	-0.9998990736	-0.1127278569
6	8.2998875036	-0.0275974914	-0.0437240186
6	7.9660442734	1.3319085091	0.0801866475
6	6.6431222566	1.7338572140	0.1359408948
7	-7.7514043434	-0.8982066963	0.0219053363
8	-7.5034529739	-2.0901030547	0.0705449905
8	-8.8763598508	-0.4313656272	-0.0051928216
1	-3.6732851341	2.4813038798	-0.0717268876
1	-5.9667858129	3.3387003784	-0.1236785539
1	-7.9070998613	1.7565736900	-0.0801046753
1	-5.1892546724	-1.5515995147	0.0652034897
1	-2.8513966259	-1.2615886131	0.0874793892
1	-1.7613475826	1.6022278491	-0.0786130317
1	-0.7499058369	-2.2223582827	0.1854053743
1	1.8424070714	-2.5577056092	0.2020636012
1	3.7257952913	1.9201912550	0.2157232621
1	6.3844971187	2.7841289870	0.2324097053
1	8.7568706362	2.0731601981	0.1329156687
1	9.3433896240	-0.3225157078	-0.0858659242
1	7.5707376418	-2.0498571768	-0.2077917263

<u>lc</u>

$Total \ energy + ZPE = -1770.688929$

6	6.5229869695	2.0620124086	-0.0108731352
6	5.6105043056	0.9933407531	-0.0085063603
6	6.1047617797	-0.3268842698	-0.0511191414
6	7.4737983076	-0.5977242513	-0.0963456472
6	8.3536582032	0.4742752815	-0.0990074799
6	7.8802870882	1.7968891705	-0.0563513094
16	4.8043611472	-1.4933878226	-0.0419290829
6	3.6049815831	-0.2087714820	0.0287382710
6	4.1748916728	1.0277766253	0.0380794327
6	2.1949578319	-0.5487560569	0.0691612101
16	0.9760832161	0.6781517385	-0.0557428207
6	-0.3070662750	-0.4873232151	0.0843928198
6	0.2059641896	-1.7571002530	0.2157358491
6	1.6207343078	-1.7912790774	0.2055057830
6	-1.6861060107	-0.0333245119	0.0510257149
6	-2.7556380342	-0.8489233981	0.0626338264
6	-4.1562949629	-0.4227999610	0.0398179589
6	-5.1516972898	-1.4010900497	-0.1201917800
6	-6.4960639158	-1.0634598369	-0.1594756174
6	-6.8430998509	0.2752837475	-0.0317562420
6	-5.8903142056	1.2754777628	0.1374656829
6	-4.5528270842	0.9199487931	0.1753226491
7	-8.2578133133	0.6460670323	-0.0697474982
8	-8.5423210367	1.8260846910	0.0498417127
8	-9.0775641308	-0.2444940040	-0.2195398726
1	7.8389754951	-1.6191186028	-0.1282461616
1	9.4220459392	0.2873366592	-0.1343071433
1	8.5896350867	2.6181365805	-0.0588568581
1	6.1567016321	3.0837577422	0.0228481601
1	-0.4121071082	-2.6403046173	0.3268006296
1	2.2009735287	-2.7020173563	0.3078611864
1	3.6027989071	1.9488359708	0.0858755389
1	-1.8288295966	1.0440487604	0.0055449116
1	-2.5994033164	-1.9259541375	0.0744093312
1	-4.8613452330	-2.4425468525	-0.2193185332
1	-7.2668962181	-1.8133738549	-0.2858028968
1	-6.2042990564	2.3064884862	0.2422144463
1	-3.8120970315	1.6978847012	0.3240307029

Total energy + *ZPE* = -1658.481218

6	5.1570272101	-1.7051611045	-0.3130887152
6	4.8932791025	-0.3457054233	-0.0932708732
6	5.9993750842	0.4878466062	0.1812688147
6	7.3017505266	-0.0194695452	0.2503214461
6	7.5266263309	-1.3724236376	0.0432638939
6	6.4475311708	-2.2113604991	-0.2402920530
6	3.5418746739	0.2174193707	-0.1500509854
6	2.4066880282	-0.5009716346	-0.0918671402
6	1.0726590902	0.0688408367	-0.1701101977
16	-0.3079107741	-0.9547026584	0.0956141412
6	-1.4131803302	0.3592280225	-0.1505688975
6	-0.7311232112	1.5228491011	-0.4191155722
6	0.6749075542	1.3589521728	-0.4328325858
6	-2.8472801248	0.1548538706	-0.0670069425
6	-3.5242457973	-1.0149287694	0.0982454499
6	-4.9507368441	-0.8471138238	0.1349925310
6	-5.3260414564	0.5045379089	-0.0112045384
16	-3.9279022046	1.5375693076	-0.1841166632
6	-6.6651936021	0.8997786277	-0.0076207108
6	-7.6364648883	-0.0783996204	0.1448543617
6	-7.2822959622	-1.4305228267	0.2911423258
6	-5.9541920837	-1.8189995747	0.2870313933
6	5.8018730866	1.8951544482	0.4070941847
7	5.6463665379	3.0287294159	0.5863072376
1	-6.9382589272	1.9439491147	-0.1210821566
1	-8.6836973903	0.2060359079	0.1508113411
1	-8.0613824762	-2.1767965342	0.4084115835
1	-5.6801014249	-2.8636971486	0.3996973592
1	1.3689626706	2.1649391340	-0.6406299854
1	-1.2274470905	2.4678983082	-0.6120959682
1	-3.0357279219	-1.9800557316	0.1868668770
1	2.4570593835	-1.5801468143	0.0363541398
1	3.4778296552	1.3011392951	-0.2211364801
1	4.3400317812	-2.3727430208	-0.5655752554
1	6.6162573066	-3.2686447376	-0.4173923347
1	8.5342808772	-1.7697791956	0.0937898748
1	8.1236103798	0.6545020320	0.4667595710

Total energy + *ZPE* = -1658.480817

6	-4.9639029684	1.6499174402	-0.0732643564
6	-4.6858429938	0.2744519095	-0.0034442717
6	-5.7649620252	-0.6145506836	0.0372924518
6	-7.0780563220	-0.1386262436	0.0069359467
6	-7.3425743242	1.2318130351	-0.0642152486
6	-6.2709125689	2.1189360570	-0.1035868242
6	-3.3260258015	-0.2748451088	0.0299417421
6	-2.1855828494	0.4337735819	-0.0229657449
6	-0.8540378427	-0.1486716803	0.0144412466
16	0.5312765089	0.8989636419	-0.0731448449
6	1.6332410085	-0.4365740251	0.0305089745
6	0.9470349127	-1.6247098520	0.1188191393
6	-0.4596883853	-1.4627816427	0.1099782845
6	3.0685315787	-0.2236101575	0.0199587518
6	3.7478076917	0.9522672898	0.1178589547
6	5.1750114450	0.7905790889	0.0749376194
6	5.5482946057	-0.5631300969	-0.0570322028
16	4.1471994654	-1.6037659343	-0.1370825141
6	6.8875889414	-0.9539128774	-0.1138680750
6	7.8611131994	0.0308688867	-0.0369490821
6	7.5089783775	1.3849226017	0.0955565889
6	6.1807104541	1.7689011319	0.1520780288
6	-8.1707754663	-1.0756083429	0.0502269091
7	-9.0497462914	-1.8279018272	0.0850952692
1	7.1589792619	-1.9997378210	-0.2155503497
1	8.9085064125	-0.2498679281	-0.0795168320
1	8.2897622273	2.1362984611	0.1544291885
1	5.9081750999	2.8150012159	0.2552694867
1	-1.1559867489	-2.2905576017	0.1764504347
1	1.4410007149	-2.5872009932	0.1986716845
1	3.2603985483	1.9154367885	0.2300834477
1	-2.2241851029	1.5180672391	-0.0997430166
1	-3.2697941846	-1.3594349041	0.1030898379
1	-4.1502378103	2.3672711540	-0.1028192283
1	-6.4584697395	3.1859296122	-0.1574859318
1	-8.3662541020	1.5883885109	-0.0869199515
1	-5.5849905566	-1.6839060677	0.0927590974

Total energy + ZPE = -1658.481649

6	5 6247176016	1 2014145572	0 0067449944
6	3.034/1/0010	-1.3014143372	0.090/448844
0	4.0303/82893	-0.5292059585	-0.0343/04393
0	5.01050054/4	1.018/300890	-0.13438//808
0	0.331394/3/1	1.38194300/3	-0.0911291400
0	1.33/98381/9	0.3901948032	0.0483020000
0	0.9/30/3333/	-0.9313003003	0.1402400297
6	3.23285/6433	-0./003183811	-0.0644052/93
0	2.1348300037	0.03/0139082	-0.0401330084
0	0./800118883	-0.432/200859	-0.081098089/
10	-0.5168403800	0.7154613762	0.0710017599
6	-1./2103854/5	-0.5245285928	-0.0/1001/588
6	-1.131/814804	-1./5/9/10035	-0.2200448215
6	0.282/5/12/5	-1./06698644/	-0.22/51//241
6	-3.1353848349	-0.2024942922	-0.0315943498
6	-3./24193/4/1	1.0241491210	-0.0811301318
6	-5.1590132121	0.9695088563	-0.0235593943
6	-5.6326079309	-0.355/92650/	0.0686675672
16	-4.314311991/	-1.501/015561	0.0950911294
6	-6.9969823020	-0.6459780882	0.1310973344
6	-7.8935705998	0.4116121312	0.1008273144
6	-7.4410544636	1.7389402043	0.0085377616
6	-6.0882490172	2.0231964998	-0.0541922453
6	8.7247507979	0.7719333983	0.0908612844
7	9.8417854754	1.0752764376	0.1254297710
1	-7.3458764427	-1.6711982744	0.2009798707
1	-8.9587095054	0.2095469689	0.1488063744
1	-8.1630595338	2.5487724209	-0.0141052785
1	-5.7383520857	3.0486633513	-0.1266354647
1	0.9113843090	-2.5811313308	-0.3481200683
1	-1.7012666303	-2.6739163860	-0.3358143412
1	-3.1662556933	1.9508847385	-0.1690928662
1	2.2852904312	1.1151297878	0.0215773194
1	3.0869125114	-1.8447877602	-0.0953030945
1	5.3536831327	-2.3479152442	0.1691932262
1	7.7418423762	-1.7120908068	0.2443852687
1	6.6397619815	2.4246038352	-0.1696598092
1	4.2685861084	1.7946090625	-0.2587831180

References

- Jacquemin, D.; Bahers, T. L.; Adamo, C.; Ciofini, I. What Is the "Best" Atomic Charge Model to Describe through-Space Charge-Transfer Excitations? *Phys. Chem. Chem. Phys.* 2012, 14, 5383. https://doi.org/10.1039/c2cp40261k.
- (2) Le Bahers, T.; Adamo, C.; Ciofini, I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations. J. Chem. Theory Comput. 2011, 7 (8), 2498–2506. https://doi.org/10.1021/ct200308m.