Efficient Design and Structural Modifications for Tuning

the Photoelectric Properties of Small-Molecule Acceptors in

Organic Solar Cells

Xiaodong He,^a Lunxiang Yin,^a Yanqin Li*^a

^aSchool of Chemistry, Dalian University of Technology, Dalian, 116024, China. Fax: 86-411-84986040; Tel: 86-411-84986040; E-mail: liyanqin@dlut.edu.cn

Supporting information

Table of contents

1. Synthetic procedures	S2
2. ¹ H-NMR and ¹³ C-NMR spectra	S4
3. DSC curve	S13
4. XRD curve	S14
5. TD-DFT calculated electronic transitions	S15
4. <i>J-V</i> characteristics of photovoltaic devices	S15
5. References	S16

1. Synthetic procedures

Scheme S1 Synthetic routes of compounds.

2-(2-ethylhexyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-isoindole-1,3(2H)-dione(4) A solution of compound 1 (1.00 g, 3.05 mmol), bis(pinacolato)diborane (0.85 g, 3.36 mmol), Pd(dppf)Cl₂ (67 mg, 0.092 mmol) and potassium acetate (0.90 g, 9.15 mmol) in 30ml distilled toluene was stirred at 100 °C under nitrogen atmosphere for 24 h. The cooled solution was diluted with 30ml water and extracted with dichloromethane $(3 \times 30 \text{ ml})$. The organic phase was dried over anhydrous sodium sulfate and then the solvent was evaporated under reduced pressure. The residue was purified by silica column chromatography eluting with petroleum ether/ethyl acetate (5:1, v/v), affording a pale yellow liquid (4) (1.06 g, 91%). ¹H-NMR (500 MHz, CDCl₃, ppm): δ 8.20 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 3.51 (d, J = 7.3 Hz, 2H), 1.79-1.74 (m, 1H), 1.28 (s, 12H), 1.24-1.16 (m, 8H), 0.84 -0.79 (m, 6H).

2,7-Dibromo-9H-fluorene(5).¹ Fluorene (10 g, 60 mmol) and FeCl₃ (0.15 g, 0.90 mmol) were dissolved in 50ml chloroform, then a solution of Br₂ (6.46 mL, 126 mmol) in chloroform (20 mL) was added dropwise at 0 °C, and the resulted mixture was stirred for 2 h at room temperature. The mixture was neutralized using saturated aqueous sodium hydrogen sulfite and extracted with dichloromethane $(3 \times 20 \text{ ml})$. Then, the organic layer was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. A white solid compound (5) was obtained in a yield of 99% without further purification (19.20 g).

2,7-Dibromo-9,9-dioctyl-9H-fluorene(6).¹ Compound 5 (3.24 g, 10 mmol), tetrabutyl ammonium bromide (0.32 g, 1 mmol) and KOH (1.12 g, 20 mmol) were dissolved in 40 ml acetone. After adding 1-bromooctane (4.0 ml, 23 mmol) in the mixture, the reaction solution was refluxed at 57 °C for 4 h. The reaction solution was cooled down, then the precipitate was filtered off and filtrate was collected.

After removing the solvent under reduced pressure, the residue was purified by silica column chromatography eluting with petroleum ether to obtain a colourless liquid (6) (4.73 g, 86%). ¹H-NMR (500 MHz, CDCl₃, ppm): δ 7.51 (d, J = 8.2 Hz, 2H), 7.47-7.42 (m, 4H), 1.93-1.88 (m, 4H), 1.22-1.03 (m, 20H), 0.83 (t, J = 7.2 Hz, 6H), 0.59-0.56 (m, 4H).

9,9-Dioctyl-2,7-bis[**2-(trimethylsilyl)ethynyl]-9H-fluorene(7).**² Under nitrogen atmosphere, compound **6** (3.00 g, 5.47 mmol), trimethylsilyl acetylene (1.70 ml, 12 mmol), Pd(PPh₃)₂Cl₂ (0.19 g, 0.27 mmol) and CuI (0.10 g, 0.54 mmol) were added in a 100 ml three-neck flask, and then triethylamine (20 ml) and freshly distilled tetrahydrofuran (20 ml) were injected into the reaction mixture. The mixture was refluxed at 70 °C for 24 h. The reaction solution was cooled down and poured into 20 ml water. After being extracted with dichloromethane (3 × 20 ml), the organic layer was dried over anhydrous sodium sulfate, then the solvent was removed under reduced pressure. The residue was purified by silica column chromatography using petroleum ether/ dichloromethane (40:1, v/v) as the eluent to give a yellow liquid (7) (1.96 g, 61%).¹H-NMR (500 MHz, CDCl₃, ppm): δ 7.58 (d, *J* = 7.8 Hz, 2H), 7.45 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.41 (s, 2H), 1.96 – 1.89 (m, 4H), 1.22 – 1.00 (m, 20H), 0.82 (t, *J* = 7.2 Hz, 6H), 0.54-0.53 (m, 4H), 0.28 (s, 18H).

2,7-Diethynyl-9,9-dioctyl-9H-fluorene (S6).² To a solution of compound **7** (1.64 g, 2.81 mmol) in tetrahydrofuran (15 ml) and methanol (15 ml), K₂CO₃ (3.88 g, 28.1 mmol) was added and the mixture was stirred at 25 °C for 4 h. Then the precipitate was filtered off and filtrate was collected. After removing the solvent under reduced pressure, the residue was purified by silica column chromatography eluting with petroleum ether/ dichloromethane (20:1, v/v) to obtain a yellow liquid (S6) (1.10 g, 90%). ¹H-NMR (500 MHz, CDCl₃, ppm): δ 7.62 (d, *J* = 7.8 Hz, 2H), 7.48 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.46 (s, 2H), 3.14 (s, 2H), 1.95-1.91 (m, 4H), 1.21-1.03 (m, 20H), 0.83 (t, *J* = 7.1 Hz, 6H), 0.58-0.53 (m, 4H).

5-(**5**-(**2**,**5**-dioctyl-3,**6**-dioxo-4-(thiophen-2-yl)-2,**3**,**5**,**6**-tetrahydropyrrolo[**3**,**4**-c]pyrrol-1-yl)thioph en-2-yl)-2-(**2**-ethylhexyl)isoindoline-1,**3**-dione(**8**) Compound A³ (0.20 g, 0.33 mmol) and compound **4** (0.14 g, 0.36 mmol) were placed in a dry three-neck flask (50 ml) with Pd(PPh₃)₂Cl₂ (24 mg, 0.033 mmol) and K₂CO₃ (0.91g, 6.60 mol). Deionized water (3.3 ml) and freshly distilled tetrahydrofuran (20 ml) were injected into the reaction mixture, and the mixture was stirred at 80 °C for 24 h under nitrogen atmosphere. After being cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica column chromatography eluting with petroleum ether/ dichloromethane (1:4, v/v) to obtain a purple solid (8) (0.20 g, 78%). M.p.:202-204°C; ¹H-NMR (500 MHz, CDCl₃, ppm): δ 8.97 (dd, *J* = 3.9, 1.1 Hz, 1H), 8.93 (d, *J* = 4.2 Hz, 1H), 8.12 (d, *J* = 1.1 Hz, 1H), 7.99 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.67 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.63 (d, *J* = 4.2 Hz, 1H), 7.30 (dd, *J* = 5.0, 3.9 Hz, 1H), 4.09 (m, 4H), 3.61 (d, *J* = 7.2 Hz, 2H), 1.88 – 1.84 (m, 1H), 1.77 (m, 4H), 1.37 – 1.25 (m, 28H), 0.93 – 0.85 (m, 12H).

5-(5-(4-(5-bromothiophen-2-yl)-2,5-dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1yl)thiophen-2-yl)-2-(2-ethylhexyl)isoindoline-1,3-dione (S5) N-bromobutanimide (0.05 g, 0.27 mmol) dissolved in chloroform (10 ml) was added dropwise in the dark to a solution of compound **8** (0.20 g, 0.26 mmol) in tetrahydrofuran (10 mL) at 0 °C. Then, the mixture was stirred at room temperature for 12 h. Afterwards, the reaction solution was poured into 20 ml water and extracted with chloroform (3 × 20 ml). The combined organic layer was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was recrystallized from petroleum ether to afford an atropurpureus solid (S5) (0.21 g, 95%) M.p.:233-234°C; ¹H-NMR (500 MHz, CDCl₃, ppm): δ 8.94 (d, J = 4.2 Hz, 1H), 8.72 (d, J = 4.2 Hz, 1H), 8.12 (s, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.63 (d, *J* = 4.1 Hz, 1H), 7.25 (d, *J* = 1.4 Hz, 1H), 4.14 – 4.08 (m, 2H), 4.04 – 3.98 (m, 2H), 3.61 (d, *J* = 7.3 Hz, 2H), 1.88 – 1.82 (m, 1H), 1.75 (m, 4H), 1.40 – 1.19 (m, 28H), 0.95 – 0.85 (m, 12H).

2. ¹H-NMR and ¹³C-NMR spectra

Fig. S1¹H-NMR spectra of compound 1

Fig. S3¹H-NMR spectra of compound 3

Fig. S5¹H-NMR spectra of compound 6

Fig. S7¹H-NMR spectra of compound S6

Fig. S9¹H-NMR spectra of compound S5

Fig. S11 ¹³C-NMR spectra of compound (PIAT)₂BT

Fig. S13¹³C-NMR spectra of compound (PIAT)₂fBT

Fig. S15¹³C-NMR spectra of compound (PIAT)₂dfBT

Fig. S17¹³C-NMR spectra of compound (PIAT)₂DPP

Fig. S19¹³C-NMR spectra of compound FADPPPI

3. DSC curves

Fig.S20 DSC curves of five compounds

4. XRD patterns

Fig.S21 XRD patterns of five compounds

5. TD-DFT calculated electronic transitions

Compound	<u></u>	EODT (- V)	1 (11 111)	C	
Compound	State	$E^{-r}(eV)$	λ (nm)	1	Composition
(PIAT)2BT	S 1	2.04	609.2	1.47	HOMO \rightarrow LUMO (70%)
	S 3	2.72	456.1	0.59	HOMO \rightarrow LUMO+2 (69%)
	S4	2.85	435.7	0.22	HOMO \rightarrow LUMO+1 (54%)
	S5	3.32	372.3	0.63	HOMO \rightarrow LUMO+3 (68%)
(PIAT)2fBT	S 1	2.02	613.0	1.39	HOMO \rightarrow LUMO (70%)
	S 3	2.73	454.5	0.72	HOMO \rightarrow LUMO+2 (51%)
	S4	2.87	432.0	0.24	HOMO \rightarrow LUMO+2 (46%)
	S5	3.33	372.5	0.56	HOMO \rightarrow LUMO+3 (66%)
(PIAT)2dfBT	S1	2.06	602.2	1.39	HOMO \rightarrow LUMO (70%)
	S 3	2.77	447.9	0.84	HOMO \rightarrow LUMO+2 (68%)
	S5	3.36	368.6	0.52	HOMO \rightarrow LUMO+3 (65%)
(PIAT)2DPP	S1	1.89	656.9	1.82	HOMO \rightarrow LUMO (71%)
	S5	2.98	416.6	0.72	HOMO-2 \rightarrow LUMO (67%)
	S10	3.51	353.3	0.43	HOMO-1 \rightarrow LUMO+1 (59%)
FADPPPI	S1	1.76	703.7	3.23	HOMO \rightarrow LUMO (70%)
	S 4	2.02	613.6	0.75	HOMO-1 \rightarrow LUMO+1 (69%)
	S18	3.18	389.4	0.55	HOMO-3 → LUMO+1 (44%)

Table S1 TD-DFT calculated electronic transitions of five compounds

6. J-V characteristics of photovoltaic devices

Fig.S22 *J-V* characteristics of photovoltaic devices employing a configuration of (a). ITO/PEDOT:PSS/P3HT : NSMAs/Al under an illumination of AM 1.5G, 100 mWcm⁻²; (b) ITO/PEDOT:PSS/DPP-based molecules : $PC_{61}BM$ /Al under an illumination of AM 1.5G, 100 mWcm⁻².

Table S2 The photovoltaic properties of the OSCs based on $(PIAT)_2DPP : PC_{61}BM$ and FADPPPI : $PC_{61}BM$

Compound	D : A	V _{oc} (V)	$J_{\rm sc}({\rm mAcm}^{-2})$	FF	PCE (%)
(PIAT) ₂ DPP	1:2	0.57	0.16	0.22	0.02
FADPPPI	1:3	0.84	1.70	0.44	0.63

7. References

1. Suman, V. Gupta, A. Bagui, S. Singh, Adv. Funct. Mater., 2017, 27, 1603820.

2. W. Xu, S. Liu, X. Zhao, N. Zhao, Z. Liu, H. Xu, H. Liang, Q. Zhao, X. Yu, W. Huang, *Chem. Eur. J.*, 2013, 19, 621-629.

3. H. Gao, Y. Li, L. Wang, C. Ji, Y. Wang, W. Tian, X. Yang, L. Yin, *Chem. Commun.*, 2014, 50, 10251-10254.