Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

"Turn-on" Fluorescent Probe for Highly Selective Discrimination of Hypochlorite (ClO⁻) from Oxidants including Dichromate ($Cr_2O_7^{2-}$) in Aqueous Media

Mushtaq Ahmed Shahid,^{[a],†} Genggongwo Shi,^{[b],[c],†} Muhammad Yousuf,^[b] Jenica Marie L. Madridejos,^[b] Farzana Mahmood,^[a] Lubna Rasheed^{*, [b],[d]}

^aInstitute of Chemical Sciences, Baha-ud-Din Zakaria University, Multan 60800, Pakistan ^bDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919, Republic of Korea

^cSchool of Materials Science and Engineering, , Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^dDivision of Science and Technology, University of Education, Township, Lahore, Pakistan [†]Authors contributed equally to this work.

Corresponding Author E-mail: lubnarasheed@ue.edu.pk (L.R.)

CONTENTS

- 1. NMR Spectra
- 2. Fluorescent Quantum Yield Determination
- 3. NMR Studies
- 4. Absorption Studies
- 5. Electrochemical Studies
- 6. Mass Spectrometry
- 7. Calculations

Figure S1-1. ¹H NMR spectrum of P1 in d_6 -acetone.

Figure S1-2. ¹³C NMR spectrum of P1 in d_6 -acetone.

2. Fluorescent Quantum Yield Determination

Anthracene was used as a standard for the quantum yield measurement of **P1**. Typically, the quantum yield was obtained by integrating the photons emitted by **P1** up to 600 nm and calculated using the following formula:¹

$$\Phi_u = \Phi_s \frac{A_s F_u n^2}{A_u F_s n_0^2}$$

where A refers to absorbance at the excitation wavelength, F refers to integrated emission area across the band, Φ refers to quantum yield, n is refraction index of the solvent containing the unknown (n_0 , standard), subscript u refers to "unknown", and subscript s refers to "standard".

Figure S2-1. Emission spectra recorded for **P1** (2 μ M) (slit width = 5 nm; λ_{ex} = 280 nm) after the addition of an anions and cations (indicated) at pH 7.4 (10 mM aqueous phosphate buffer).

3. NMR Studies

10 mM solutions of **P1** were independently prepared in d_6 -acetone with 10% D₂O and d_6 -acetone, respectively. Afterward, known quantities of KMnO₄ or NaClO were added and kept for a specified length of time after vigorous shaking. The resulting NaClO solutions were directly scanned at 298 K while the KMnO₄ resultants were filtered to remove precipitated manganese species before data acquisition.

4. Absorption Studies

UV-Vis spectroscopy samples were prepared in a similar manner as those described in the fluorescence titration section using an optical path length of 10 mm.

Figure S2-2. Absorption spectra of **P1** in 10 mM phosphate buffer (pH 7.4) (**a**), and after oxidation by ClO⁻ (**b**).

5. Electrochemical Studies

Cyclic voltammetry (CV) of 0.5 mM of **P1** in 75% acetone with 25% water were performed using 5 mM of tetrabutylammonium dihydrogen phosphate (TBAH₂PO₄) as the supporting electrolyte. Various scan rates were applied. Platinum wire was used as working electrode, Ag/AgCl in 3 M NaCl (aq) was used as reference electrode, and carbon was used as the counter electrode.

6. Mass Spectrometry

Data were recorded for a solution of 2 μ M of **P1** in THF before and after the addition of 20 equiv. of ~ 5% NaClO_(aq).

7. Calculations

The electronic structure calculations for **P1**, and its respective oxidation products were performed with the Gaussian09 program package.² The ground state geometries and electronic structures of the complexes were optimized at the CAM-B3LYP/6-311++G(d,p) level. Time-dependent density functional theory (TD-DFT) calculations were used to determine the optical properties of the complexes based on the S₀ ground-state geometry. All Gaussian calculations were performed with polarizable continuum model (solvent = water) to account for solvent effects. Gas-phase calculation of absorbance and fluorescence spectra for immediate comparison with experimental values were performed by Orca³ program package.

Energy/eV ^a	Wavelength/nm	Oscillator strength	MOs	Coefficient ^b
4.21	294.7	0.0343	$\begin{array}{c} H-1 \rightarrow L+2 \\ H \rightarrow L+1 \\ L \rightarrow L+1 \end{array}$	0.19406 0.60349 0.23983
4.35	285.0	1.1052	$\begin{array}{c} H-3 \rightarrow L+2 \\ H \rightarrow L+2 \\ L \rightarrow L+2 \\ L \rightarrow L+2 \\ L \rightarrow L+9 \\ L \rightarrow L+15 \end{array}$	0.10556 0.22327 0.59308 0.10823 0.10032
4.41	281.3	0.0554	$\begin{array}{c} L \rightarrow L+6\\ L \rightarrow L+8 \end{array}$	0.61007 0.26354
4.80	269.6	0.1979	$\begin{array}{c} \text{H-1} \rightarrow \text{L+1} \\ \text{H} \rightarrow \text{L+2} \end{array}$	0.49426 0.35220

Table S3-1. Calculated singlet excitation energies, oscillator strengths, and molecular orbitals (MOs) involved in the excitation for **P1**.

^aOnly selected excited states were considered. ^bConfiguration interaction (CI) coefficients are in absolute value.

Figure S3-1. Calculated molecular orbitals of P1 based on the ground state geometries.

Energy/eV ^a	Wavelength/nm	Oscillator strength	MOs	Coefficient ^b
2.69	460.4	0.0116	$ \begin{array}{c} H \rightarrow L \\ H-1 \rightarrow L \\ H-2 \rightarrow L \\ H-3 \rightarrow L \end{array} $	0.64667 0.16686 0.15240 0.10435
3.94	314.4	0.0623	H-4 → L H-6 → L	0.14934 0.67502
4.05	306.0	1.3218	$H-7 \rightarrow L$ $H-6 \rightarrow L$ $H-4 \rightarrow L$ $H-3 \rightarrow L$ $H-1 \rightarrow L+1$ $H \rightarrow L+2$	0.10108 0.17891 0.40320 0.26558 0.12404 0.40459
4.34	285.4	0.0676	$\begin{array}{c} H-7 \rightarrow L\\ H-4 \rightarrow L\\ H-3 \rightarrow L\\ H-1 \rightarrow L+1\\ H-1 \rightarrow L+2\\ H \rightarrow L+1\\ H \rightarrow L+2\end{array}$	0.10544 0.21232 0.15508 0.27453 0.22382 0.44309 0.21254
4.52	274.5	0.2379	$H-8 \rightarrow L$ $H-7 \rightarrow L$ $H-4 \rightarrow L$ $H-4 \rightarrow L+1$ $H-3 \rightarrow L+1$	0.12101 0.52160 0.16763 0.10863 0.29928

Table S3-2. Calculated singlet excitation energies, oscillator strengths, and molecular orbitals (MOs) involved in the excitation for $[P1-p-2e]^+$.

^aOnly selected excited states were considered. ^bThe CI coefficients are represented as their absolute values.

¹ D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107.

² Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

³ F. Neese, Wires Comput. Mol. Sci., 2012, 2, 73.