Supporting Information

Ordered Mesoporous Carbon with Enhanced Porosity to Support Organic Amine: Efficient Nanocomposites for the Selective Capture of CO₂

Weiping Kong* and Jing Liu

School of Teacher Education, Shaoxing University, Shaoxing, Zhejiang, 312000,

China. E-mail: kongweiping0111@163.com

Gas adsorption

Before measurement, the samples were pretreated at 180 °C in a N_2 flow for 12 h. The CO₂ and N₂ adsorption isotherms at 0, 30, 50 and 75 °C were measured using the Micromeritics Tristar II 3020 system. Correspondingly, adsorption selectivity in cases of CO₂/N₂ were calculated according to the Ideal Adsorption Solution Theory (IAST).

Samples	Contents	C (<i>wt</i> %) ^{<i>b</i>}	N (<i>wt</i> %)	O (<i>wt</i> %)
	$(wt.\%)^{a}$			
OMC		93.36		6.64
0.29PEI@OMC	28.2	80.35	11.29	4.23
AOMC		92.13	2.85	5.02
0.26PEI@AOMC	25.7	80.06	12.21	4.08
0.44PEI@ AOMC	44.4	72.05	18.56	3.01
0.52PEI@ AOMC	51.6	67.89	21.58	2.47
0.60PEI@ AOMC	60.2	64.53	24.67	2.03

Table S1 The element (C, N and O) content of prepared samples.

^{*a*} The loading contents of PEI estimated by the thermogravimetric analysis. ^{*b*} Determined from elemental analysis.

Samples	Temperature (°C)	Pressure (bar)	CO ₂ capacities (mmol/g)	Refs.
AOMC	30	0.15	0.52	This work
0.44PEI@AOMC	30	0.15	0.72	This work
0.52PEI@AOMC	30	0.15	0.69	This work
COP-19	25	0.15	0.40	S1
Azo-COP-2	25	0.15	0.41	S2
PPN-101	25	0.15	0.39	S3
MAPOP-4	25	0.15	0.45	S4
PCP-BF ₄	25	0.15	0.34	S5
DA-CMP-1	25	0.15	0.30	S6
TNCMP-2	25	0.15	0.30	S7
TBMID	25	0.15	0.50	S8

Table S2 A comparison of CO_2 adsorption capacities of reported porous materials.

Porous materials	Temperature	Method	CO_2/N_2	Refs.
	(°C)		selectivities	
AOMC	30	IAST ^a	43	This work
0.44PEI@AOMC	30	IAST ^a	58	This work
0.52PEI@AOMC	30	IAST ^a	64	This work
PFPOP-3	25	IAST	57	S9
DA-CMP-1	25	IAST	60	S 6
SNW-1	25	IAST	50	S10
Mg-MOF-74	30	IAST	44	S11
Cu-BTC	10	IAST	34	S12
MIL-101	25	IAST	12	S13

Table S3 A comparison of CO_2/N_2 selectivities of porous materials reported in the literature.

 $^{\rm a}\,IAST$ CO2/N2 (0.1:0.9 v/v) selectivity at 1 bar over prepared samples.

Figure S1 FTIR spectrum of prepared samples.

Figure S2 N_2 adsorption isotherms at -196 °C (A) and BJH pore size distributions (B) of OMC and AOMC.

Figure S3 High resolved SEM and TEM images of pristine (A,C) 0.29PEI@OMC and (B,D) 0.26PEI@AOMC samples.

Figure S4 CO₂ (solid symbols) and N₂ (hollow symbols) adsorption isotherms of prepared samples at (A) 0 $^{\circ}$ C, (B) 30 $^{\circ}$ C, (C) 50 $^{\circ}$ C and (D) 75 $^{\circ}$ C.

References

- [S1] H. A. Patel, C. T. Yavuz, Highly optimized CO₂ capture by inexpensive nanoporous covalent organic polymers and their amine composites, Faraday Discuss. 183 (2015) 401–412.
- [S2] H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun, Unprecedented high-temperature CO₂ selectivity in N₂-phobic nanoporous covalent organic polymers, Nat Commun. 4 (2013) 1357–1364.
- [S3] M. Zhang, Z. Perry, J. Park, H. C. Zhou, Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost, Polymer 55 (2014) 335–339.
- [S4] X. Ding, H. Li, Y. C. Zhao, B. H. Han, Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane, Polymer Chem. 6 (2015) 5305–5312.
- [S5] O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y. Jung, K. Polychronopoulou, A. Coskun, Porous cationic polymers: the impact of counteranions and charges on CO₂ capture and conversion, Chem. Commun. 52 (2016) 934–937.
- [S6] X. Y. Wang, Y. Zhao, L. Wei, C. Zhang, J. X. Jiang, Nitrogen-rich conjugated microporous polymers: impact of building blocks on porosity and gas adsorption, J. Mater. Chem. A 3 (2015) 21185–21193.
- [S7] S. Ren, R. Dawson, A. Laybourn, J. X. Jiang, Y. Khimyak, D. J. Adams, A. I. Cooper, Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine, Polymer Chem. 3 (2012) 928–934.
- [S8] Y. Zhao, X. Wang, C. Zhang, F. Xie, R. Kong, J. X. Jiang, Isoindigo-based microporous organic polymers for carbon dioxide capture, RSC Adv. 5 (2015) 100322–100329.
- [S9] S. H. Jia, X. Ding, H. T. Yu, B. H. Han, Multi-hydroxyl-containing porous organic polymers based on phenol formaldehyde resin chemistry with high carbon dioxide capture capacity, RSC Adv. 5 (2015) 71095–71101.
- [S10] X. Gao, X. Zou, H. Ma, S. Meng, G. Zhu, Highly selective and permeable porous organic framework membrane for CO₂ capture, Adv. Mater. 26 (2014) 3644–3648.
- [S11] J. A. Manso, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energ. Environ. Sci. 4 (2011) 3030–3040.

- [S12] P. Aprea, D. Caputo, N. Gargiulo, F. Iucolano, F. Pepe, Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal–organic framework and 13X zeolitic molecular sieve, J. Chem. Eng. Data 55 (2010) 3655–3661.
- [S13] Y. C. Lin, Q. J. Yan, C. L. Kong, L. Chen, Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO₂ capture, Sci. Rep. 3 (2013) 1859–1855.